
Text Book on

Principles of
Real Analysis
As per U.G.C. Syllabus for B.A./B.Sc(Honours)

in
Mathematics

Under all colleges affiliated to Dibrugarh and Gauhati University.

(To be effective from the session 2019-2020)

First Edition

by
Ravendra Kumar

(Head) Department of Mathematics
V.R.A.L. Govt. Girls Degree College

Bareilly (U.P.).



.



Preface

The book has been designed for the student of B.A/B.Sc(Honors) classes of

Indian university in accordance with the new unified syllabus of Mathematics recommend

by the board constituted by the U.G.C. of India. Every effort has been made to make

the presentation of subject with well graded solved example, Simple and easily

accessible to an average students without sacrificing. This text book incorporates the

latest syllabus of various universities such as Dibrugrah and Gauhati.

We have tried to keep the book free from printing error. We shall be grateful to

the professor and students who will point out the error or any other valuable suggestion

to improve the quality of book.

Authors
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SYMBOLS AND THEIR MEANINGS

“there exists”

“for every” or “for all”

“implies”

“implies and is implied by” or “if and only if”

“belongs to”

“does not belong to”

“is a subset of” or “is contained in”

“is a super-set of”

“is a proper subset of”

R “is not R-related to”

:or “such that”

“union”

“intersection”

“the null set”

N “the set of natural numbers”

I “set of integers”

Q “set of rational numbers”

R “set of real numbers”

C “set of complex numbers”

I+ “set of positive integers”

R+ “set of positive real numbers”

Q+ “set of positive rational numbers”

I0 “set of non-zero integers”

Q0 “set of non-zero rational numbers”

R0 “set of non-zero real numbers”

C0 “set of non-zero complex numbers”
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Chapter 1

SEQUENCES OF REAL NUMBER

For any set S, A sequence is a function with domain N and with range subset of S. It we
take S = R than this function is called the real sequence.

In this chapter we shall deal with real sequence.

1.1. Definition :

If N is a set of Natural numbers and R is a set of real numbers then the function f whose
domain N and whose range is subset of R is called the real sequence. Symbolically we can
say that f : N � R is real sequence.

If f : N � R is sequence then f(n) associate with unique real number. This no. is called the
nth term of this sequence. We write f(n) in other notation as x

n
 . We write the q sequence

symbolically as <x
n
> , {x

n
} x

1
, x

2
 ..... are called the First, Second ....term. We write any

sequence by defining the nth terms, e.g. if we have a sequence <x
n
>= <1,2,3,....., n, ....�

then we can also write it as <n>. other way to write a sequence is said to be inductively (or
recursively). In this way we write the first term of sequence and give the formula for
x

n+1
(n � 1) in terms of x

n
.

e.g. if we have a sequence < 2n > then it is inductively written as

x
1
 = 2, x

n + 1 = 
x

n + 2

1.2. Range :
Set of all distinct terms of a sequence is said to be its range.

e.g. <1, 1, 1, ....> is any sequence then its range set is {1}

1.3. Constant Sequence :

A sequence <x
n
> is said to be constant sequence if x

n
 = K n �N where K � R.

e.g. <1, 1, ....> is a constant sequence.

1.4. Subsequence :
If <x

n
> is any sequence and n

1
 < n

2
 < ..... <n

m
 < .... is strictly increasing sequence of

positive integer. Then the sequence <
nmx > is said to be subsequence of <x

n
>

e.g. Take a sequence <1, 0, 1, 0, 1, 0,...>� then <1, 1, 1, ....��& <0, 0, 0, ....>�are two
subsequences.

Another example <1, 1, 1, ....> & <– 1, – 1, – 1....> are subsequence of <1, – 1, 1, – 1, ...>

9



1.5. Bounded and Unbounded sequence :

Let <x
n
> is any sequence. This sequence is bounded above if � a real no. M

1
 s.t

x
n
 � M

1
 �  n � N

This sequence is said to be bounded below if � a real no. m
1
s.t. m

1
� x

n
 �  n � N

A sequence <x
n
> is called bounded sequence if It is both ie. it is bounded above as well as

bounded below.

It the sequence <x
n
> is not bounded then it is called unbounded sequence.

EXAMPLE

(i) � � x  =  
1

n
 n  is bounded sequence since 0 <x

n
 < 1

 � n � N

(ii) <(–1)n> is bounded since – 1� x
n
 � 1� n � N

(iii) Other bounded sequences are

�
�
� � � � �

n

n x

n
n

1
 ,  

–1
 ,  1 –  –1

b g b g
(iv) The sequence < –n > is not bounded actually it is bounded above because x

n
 < 1 � n

� N. We can say it is unbounded below because we can not find any real no. m
1
 st.

m
1
� x

n
 � n � N

(v) The sequence < n > is not bounded. It is unbounded or we can say it is unbounded
above.

(vi) <(–1)n n> is unbounded. It is unbounded below as well as unbounded above or we
can say it is neither bounded below nor bounded above.

1.6. Supremum and Infimum of the sequence :

The least no. M of the set of upper bound of a sequence <x
n
>  if exist, is said to be

supermum or least upper bound of the sequence <x
n
>.

The greatest no. m of the set of lower bound of a sequence <x
n
>, if exist, is said to be

Infimum or greatest lower bound.

Theorem 1:

A sequence <x
n
> is bounded if an only if � a natural no. m, l � R and K > 0 s.t. |x

n
 – l | <

K �  n � m.

Proof :

It is given < x
n
 > is bounded. So � two real no. m

1
 and M

1
 s.t.

m
1
 < x

n
 < M

1
 �  n � N

10
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m
M m M m M

1
1 1 1 1 1

2 2 2
 –  

m
 x  M  n N1

n 1

�
�

�
�

�
� �– –

or, 
m

 x   n N1
n

–
–

–M m M M m1 1 1 1 1

2 2 2
�

�
� � �

If
m M m

 
M

 k(say) &     say  then1 – 1 1 1

2 2
�

�
� � b g  – k <x

m
 – l < k

� | x
n
 – l | < k � n � N

� | x
n
 – l | < k � n � m         Where  m = 1�N,    l�R,  k > 0

Conversely, if l�R,  k > 0, m � N s.t.

| x
n
 – l | < k �  n � m.

� l – k < x
n
 < l + k  �  n � m.

Let m
1
 = min {x

1
 , x

2
 , ..... x

m–1 
, l – k}

M
1
= max{x

1
, x

2
 ...., x

m–1
 , l + k}

then m
1
 � x

n
 � M

1
 � n � N

so < x
n
> is bounded.

1.7. Limit  :

Definition :

Let < x
n 
> be a sequence in R. Then < x

n
> is converge to l�R or l is limit of < x

n
> if to each

�<0 � a + ve integer m (depending on �) s.t. | x
n
 – l | < �� n � m if a sequence <x

n
> has

a limit l then we say that sequence <x
n
> is convergent and converges to l.

If a sequence <x
n
> has a limit l then we write lim

n��
� � x  =  n �  or lim

n��
 x  =  n �

Theorem 2:

Every convergent sequence is bounded but converse is not true.

Proof :

Let <x
n
> be any sequence converging to l

lim x
n
 = l. By Definition

take � = 1, � a + ve integer m s.t.

| x
n
 – l | < 1 � n � m.

l – 1 < x
n
 < l + 1 � n � m

If, M
1
 = min{x

1
, x

2
 ....., x

m–1
, l –1} and

M
2
 = max{x

1
, x

2
 ...., x

m–1
, l + 1}

11
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Then M
1
 � x

n
 � M

2
 � n � N

So, <x
n
 is bounded.

Converse of the above the orem is not true for Example take

<(–1)n>. This sequence is bounded since –1� x
n
 �1 � n � N

x
n
 = (–1)n

lim x
2n

 = lim (–1)2n = lim 1= 1

lim x
2n + 1

 = lim (–1)2n + 1 = lim (–1)= –1

lim x
n
 = does not exist. So < x

n 
> does not convergent <(–1)n> oscillates finitely.

Theorem 3:  Every convergent < x
n
 > has unique limit.

Proof :

Let <x
n
> be a sequence converges to l

1
 & l

2
 then by definition we have to each ��> 0 , � a

+ ve integer m
1
 s.t.

| x
n
 – l

1
| < �/2 � n � m

1
 and � m

1
           ---(1)

and � m
2
 s.t.

| x
n
 – l

2
| < �/2 � n � m

1
 and � m

2
            ---(2)

If m = max {m
1
, m

2
}

Then for n � m we use the triangle inequality to get

| l
1
 – l

2
| = |l

1
 – x

n
 + x

n
 – l

2
|

� |x
n
 – l

1
| + |x

n
 – l

2
|

�
� �

� 
2

 +  
2

 =  

From (1) & (2)

� | l
1
 – l

2
| < �

Since � is arbitrary so we conclude l
1
 = l

2

1.8. Divergent Sequence :

A sequence < x
n
> is diverge to + � if for a given M�R+, however large, ��a + ve integer m

s.t. x
n
 > M � n � m.

If < x
n
> diverge to + � then we write lim x

n
 = � or x

n
 � � as n � ��Sequence <x

n
> is

diverge to – � if for a given M�R–, However large, � a + ve integer m s.t. x
n
 < M � n � m.

If < x
n
 > diverge to – � then we write lim x

n
 = – � or x

n
 � – � as n ���

A sequence is divergent if it is either diverge to + � or – �
1.9. Oscillatory sequence :

A sequence < x
n 

> which is neither convergent nor divergent is said to be oscillatory

12
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sequence an oscillatory sequence is oscillate finitely if it is bounded. If it is unbounded
then it is oscillate infinity.

IMPORTANT POINTS

1. Sequence � �
1

n
 is convergent.

2. Sequence < rn > is convergent, | r | < 1

3. Sequence � �
–1b gn
n

 is convergent.

4. Sequence < n > , < n2 > are diverges to + ¥

5. Sequence < – n >, < – n2 > are diverges to – ¥

6. < (–1)n > oscillates finitely.

7. < (–1)n.n > oscillates infinitely.

Theorem 1 : Let < x
n
> and < y

n
> are two sequences if lim x

n
 = l

1
 and lim y

n
 = l

2
 then lim

(x
n
 � y

n
) = l

1
 � l

2

Proof :

Since lim x
n
 = l

1
 so to each � > 0, ( a + ve integer m

1
 s.t.

1 12nx l n m               ---(1)

Again lim y
n
 = l

2
 so to each � > 0 �

a + ve integer m
2
 s.t. yn –    

2
  n  m2 2� �

�
� �     ---(2)

Now if m = max{m
1 
, m

2
}

Then,

& 

1

2

2

2

n

n

x n m

y n m

�

�
    ---(3)

|(x
n
 + y

n
) – (l

1
 + l

2
) | = |x

n
 – l

1
 + y

n
 – l

2
|

13
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� |x
n
 – l

1
 | + |y

n
 – l

2
|

�
� �

� � 
2

 +  
2

  n  m

= �             From (3)

So the sequence < x
n
 + y

n
> is convergent and lim(x

n
 + y

n
) = l

1
 + l

2
 = lim x

n
 + lim y

n

Similarly we can easily show that

lim(x
n
 – y

n
) = l

1
 – l

2
 = lim x

n
 – lim y

n

Theorem  2: If lim x
n
 = l

1
 and

lim y
n
 = l

2
 then lim(x

n
 . y

n
) = l

1
l
2
 = lim x

n
 . lim y

n

Proof :

We take | x
n
 . y

n
 – l

1
 l

2
 | = | x

n
 y

n
 – x

n
 l

2
 + x

n
 l

2
 – l

1
 l

2
|

= | x
n
 (y

n
 – l

2
) + l

2
 (x

n
 – l

1
)| � | x

n
 (y

n
 – l

2
) | | l

2
 (x

n
 – l

1
)|

= | x
n
 | | y

n
 – l

2
| + | l

2
| |x

n
 – l

2
|      ---(1)

Since < x
n
> is converges to l

1
 and we know Every convergent sequence is bounded. So �

a no.

M > 0 s.t. | x
n
| � M �  n.

If  k = Sup.{M
1
 |l

2
|}

So from (1) |x
n
 .y

n
 – l

1
l
2
 � k {|y

n
 – l

2
 | + |x

n
 – l

1
|}     ---(2)

Since < x
n
> converges to l

1
 so to each � > 0 �  a + ve integer M

1
 s. t.

xn – �1 �
�

� � 
2k

  n  M1 . Since < y
n
> converge to l

2
 so to each � > 0 ( a + ve integer M

2

s.t. yn – �2 �
�

� � 
2k

  n  M2

If  M1 = Sup.{M
1
 , M

2
}

So, 

x

y

n

n

–

–

�

�

1

2

�
�

� �

�
�

� �

O

Q

PPPP

 
2k

  n  M

  
2k

  n  M

/

/        ---(3)

From (2) & (3)

xn  y  –    k 
2k

 +  
2k

  n  Mn 1
/� �2 �

� �L
NM

O
QP � �

14

Text Book on Principles of  Real Analysis



< �  �  n � M1

Hence lim x
n
 y

n
 = l

1
 l

2
 = lim x

n
. lim y

n

Theorem 3 : If lim x
n
 = l (� 0) and x

n
 � 0 � n then �

�
im

xn

1
 =  

1

Proof :

�  l � 0 ( a real no. M > 0 and a + ve integer m/ s.t.

M < | x
n 
|  � n � m/                       ---(1)

Now it is given that < x
n
 > converges to l so to each ��> 0 � a + ve integer

m* s.t. | x
n
 – l | < M | l | �  �  n � m*      ---(2)

If m = max (m1, m*) then

| x
n
 | < M  �  n � m

& | x
n
 – l | < M | l | �   �  n � m

i.e.  (1) & (2) hold for  n � m.

Now, 
1 1

 n

n n

Mx
n m

x x M

��

� � � From  (3)

1 1
 

n

n m
x �

� � � im  =  
1

   ie.  
1

x
  converges to 

1

n

�
� �

1

xn

Theorem 4 : If lim x
n
 = l

1
 & lim y

n
 = l

2
 where l

2
� 0 and y

n
 � 0  � n�N. Then.

�
�

�
im

x
 =  n 1

yn

F
HG
I
KJ 2

Proof :

From the theorem 4 we have if lim y
n
 = l

2
 then � �

im
1

y
 =  

n

1

2
 and from the theorem 2 lim

(x
n
 – y

n
) = lim x

n
 . lim y

n
 = l

1
.l

2

15
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So, 
1

lim lim .n
n

n n

x
x

y y

� � im x  
1

yn
n

� �im

� �  
1

 =  1
2

1�
�

�

�2

Theorem 5 : If the sequence < x
n
> converges to l then the sequence <| x

n 
|> converges to

| �  |.

Proof :

It is given that sequence < x
n
> converges to l so we have to each � > 0 � a + ve integer m

(depending on �) s.t.

|x
n
 – l | < � � n � m      ---(1)

� | | x
n
 | – | l | � | x

n
 – l |

So,  | | x
n
 | – | l | | < �  � n � m      From (1)

� < | x
n
 | > Converges to l.

Theorem 6 : If < x
n
> is a convergent sequence s.t. x

n
 � 0 � n�N and lim x

n
 = l then l � 0

Proof :

Let l < 0.

� lim x
n
 = l   so to each � > 0 �� a + ve integer m s.t.

| x
n
 – l | < � �  n � m

ie. l – � < x
n
 < l + � � n � m.

We choose � = – l

So For � = – l > 0     a + ve integer m/ s.t.

l + l < x
n
 < l – l   � n � m/

� 2l < x
n
 < 0      � n � m/

or x
n
 < 0          � n � m/

Which is contradiction because x
n
 � 0  � n�N.

So our assumption is wrong.

Hence l � 0.

Theorem 7 : If <x
n
> and <y

n
> are two sequences s.t. x

n 
� y

n
 � n�N and lim x

n
 = l

1
,

16
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lim y
n
 = l

2
 then l

1
� l

2

Proof :

Consider z
n
 = y

n
 – x

n

z
n
 � 0   � n�N           [� x

n
 < y

n
]

Then from the theorem (6) we have

lim z
n
 � 0

i.e.  lim(y
n
 – x

n
) � 0

� lim y
n
 – lim x

n
 � 0

� lim y
n
 � lim x

n

� l
1
 � l

2

Theorem 8 : (Sandwich theorem) Let <h
n
>, <g

n
> and <t

n
> are three sequences s.t. h

n
 � g

n

� t
n
 � n�N and lim h

n
 = l = lim t

n
 then lim g

n
 = l.

Proof :

Given h
n
 � g

n
 � t

n
      ---(1)

Since lim h
n
 = lim t

n
 = l , so for given

�> 0 � +  ve integers m/, m// s.t.

| h
n
 – l | < �  � n � m

1
            (2)

& | t
n
 – l | <�  � n � m

2
          (3)

if m = max{m
1
 , m

2
} then (2) & (3) holds for n � m

From (1) , (2) , (3)

l – � < h
n
 � y

n
 � t

n
 < l + �      � n � m

� l – � < g
n
 < l + �    � n � m

� | g
n
 – l | < �    � n � m

So,  lim g
n
 = l

Theorem 9 : Any subsequence x  nk
 of a sequence nx  which diverge to infinity is

also diverge to infinity.

Proof :

Given <x
n
> diverge to �. So By definition for a given M�R+ � a + ve integer m s.t

x
n
 > M    � n � m

Since x  nk
 is subsequence of nx  so < n

1
 , n

2
 ...., n

k
 , .... > is strictly increasing sequence

of Natural numbers.

17
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We have n
1
 � 1. By induction we can easily show that n

k
 � k

if k � m, then

n
k
 ��k ��m � n

k
 ��m

So,  xnk
> M  � n � m

� x  nk
 diverge to infinity..

Theorem 10 : Let <x
n
> & <y

n
> are two sequences and both are diverges to infinity. The

sequences <x
n
 + y

n
> and <x

n
 y

n
> diverges to infinity.

Proof :

Since <x
n
> and <y

n
> both are diverge to infinity so for a given M

1
 ��R+ , �� a + ve integer

m
1
 s.t.

x
n
 > M

1
  � n � m

1

and for a given M
2
��R+ � a + ve integer m

2
 s.t. y

n
 > M

2
  � n � m

2

If m = max (m
1
 , m

2
) then

(x
n
 + y

n
) > M

1
 + M

2
 = M (say)

& x
n
 y

n
 > M

1
 M

2
 = M1 (say)

� < x
n
 + y

n
 > & < x

n
 y

n
 > both are diverge to infinity.

Theorem 11: Let <x
n
> is sequence s.t. x

n
 > 0 � n � N. Then x

n
 diverge to infinity ifff

1

xn
 converge to zero.

Proof :

Given lim x
n
 = � . so for 

1
0 ,  � a + ve integer m s.t. n

1
x n m

� � � 
1

x
  

n

� � � 
1

x
 –  0  

n

18
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1
 0

n

n m
x

�  lim
1

x
 =  0

n

ie. 
1

xn
 converges to zero.

IInd Part : Let MÎR+ any arbitrary number. Since lim
1

x
 =  0

n

 so for 1

M
  0  � �  a +

ve Integer m s.t. 
1

xn

 –  0   
1

M
  n m� � �

� � � � �   
1

M
    x   n Nn

1
0

xn

� x
n
 > M    � n � m

So lim x
n
 = �

<x
n
> diverges to infinity.

Theorem 12 : If lim x
n
 = � then <x

n
> is bounded below but not bounded above, if lim x

n

= – � then <x
n
> is bounded above but not bounded below.

Proof :

Since < x
n
> diverges to �, so by definition, for a given M�R+ � a + ve integer m s.t.

M < x
n
   � n � m

There are finitely many terms in <x
n
> which are � M.

Sp, <x
n
> is unbounded above

Consider M = 1

1< x
n
  � n � m

Let M
1
 = min{x

1
, x

2
, ...x

m–1
, 1}

Then M
1
 � x

n
   � n � m

So, <x
n
> is bounded below similarly we can prove the second part easily.
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EXAMPLE

1. Prove that the sequence 
1

n  has the limit 0.

Sol. : Let ��> 0 be given

1 1 1
0

n n n

When 
1

�
�  n

Now we select + ve integer m �
�
1

then   –  0      n m
1

n
� � � �

So 
1

n
 has the limit Zero.

2. By the use of Definition, show that the sequence 
3 1

4 5

n

n  converging to 
3

4
.

Sol. :
Let ��> 0 be given,

3n – 1

4n +  5
 –  

3

4
 =  

12n –  4 –  12n –  15

4 4n +  5b g

=  
– 19

4 4n +  5b g

=  
19

4 4n +  5
 =  

19

4 4x +  5
  

19

n
  b g b g � � �

When 
19

n
  � �
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if we select m  
19

�
�

 then

3 1 3

4 5 4

n
n m

n

So the sequence 
3n –1

4n + 5
 Converges to 

3

4

3. Show that 
n +  1

n
 converges to 1. (by use of definition)

Sol. :

Let �> 0 be given.

n +  1

n
 –  1 =  

n +  1 – n

n
 =  

1

n
 =  

1

n
  � �

When 
1

�
�  n

If we select m  �
�
1

 then 
n +  1

n
 – 1     n m� � � �

So the sequence 
n +  1

n
 converging to 1.

4. By use of Definition show that the sequence < n > diverging to 
Sol. :

Let M�R+ is given.

Since if a and b any two + ve real numbers then � a + ve integer n
1
 s.t. n

1
a > b (Archimedean

property).

If we take a = 1 then n
1
 > b.

Now take b = m & n
1
 = m we have m > M

For Every n  m and m > M, we have

n � m > M    ie.  n > M

So, n > M   � n � m

� x
n
 > M    � n � m
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Hence, < x
n
 = n > diverge to ��

5. Prove that (by definition) the sequence log  
1

n
 diverge to – 

Sol. : Let M�R+ given

log  
1

n
  –  M�

If (log 1 – log n) = – log n < – M

If log n > M

If n > eM

We select a + ve integer m > eM then log  
1

n
  –  M�  � n � m.

So the sequence log  
1

n
 diverging to – �.

6. Is the sequence 
n

n +  1
 is bounded ?

Sol. :

x
n

nn � �1

lim  lim  =  1x
n

nn � �1

< x
n 
> converging to 1 ie. x

n

nn � �1
 is convergent. Since Every convergent sequence is

bounded. So given sequence 
n

n �1
 is bounded.

7. Prove that the sequence <(– 1)n n> oscillate infinity ?

Sol. :

Given sequence is < (– 1)n n> ie.

< ...... – 5, – 3, – 1, 2, 4, 6, .....>

Since we can not find a + ve real no. M s.t. |x
n
|  � M  � n � N or the range set of this

sequence is unbounded so this sequence is not bounded i.e. it is unbounded sequence.
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Now, lim x
2n

 = lim [(– 1)2n . 2n] = �

lim x
2n + 1

 = lim [(– 1)2n +1. 2(n + 1)] = – �

The sequence is not divergent.

Hence the given sequence <(–1)n n> oscillates infinitely.

1.10. Monotonic Sequence :

A sequence < x
n
> is called monotonic if it is either monotonically increasing or

monotonically decreasing sequence. < x
n
> is called monotonically increasing sequence if

x
n
 � x

n + 1
  � n � N

<x
n
> is called monotonically decreasing sequence if x

n
 � x

n+1
  � n � N .

If x
n
 � x

n + 1
  � n � N then <x

n
> is called strictly monotonically increasing and if x

n
 � x

n + 1

� n � N then it is called strictly monotonically decreasing sequence.

If <x
n
> is strictly monotonically increasing or strictly monotonically decreasing then it is

called strictly monotonic sequence.

IMPORTANT POINT

1. Sequence < 1, 2, 2, 3, 3, 3, .... > is monotonically increasing.

2. Sequence < 1, 2, 3, ....> is strictly monotonically increasing sequence.

3. – 
1

n
 is strictly increasing sequence.

4. <– 2n> is strictly decreasing sequence.

5. <1, 0, 1, 0, 1, 0, ..... > is not monotonic.

Theorem 1 :

Monotone Convergence theorem : Every Monotonic Sequence is Convergent iff it is
bounded. Again if <��

n 
> is bounded and monotonically increasing then lim �

n 
 = l

1
 where

l
1
 = Sup{�

n 
|n�N} and if <t

n
> is bounded and monotonically decreasing then lim t

n
 = l

2

where z�  = Inf.{t
n
 }n�N

Proof :

Let <��
n 
> be monotonic and convergent. we have already proved in a theorem that Every

convergent sequence is bounded.

If <� �
n 

> is bounded monotonic sequence then it is either monotonically increasing or
monotonically decreasing sequence. If <� �

n 
> is bounded and monotonically increasing

now it is given <��
n 
> is bounded so � a real no. k

1
 s.t.
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�
n 
� k

1
    � n � N

By completeness property l
1
 = Sup {�

n 
|n�N} � R Now � > 0 be given. l

1
 – � is not upper

bound of {�
n 
|n�N} So � an elements �

m
 of set {�

n 
|n�N} s.t. l

1
 – � < �

m
 . Since < �

n 
> is

monotonically increasing.

So, �
m 
���

n 
when n � m

Thus we have l
1
 – �����

m 
���

n 
� l

1 
< l

1
 + ���� � n � m.

� �l
1
 – �����

n  
< l

1
 + ���� � n � m

��|�
n  

- l
1
 | < ��   � n � m

� lim �
n  

= l
1 
= Sup {�

n 
 | n�N}

ie. �
n  

converges to l
1

let < t
n 
> is bounded and monotonically decreasing then <–t

n 
> is bounded and monotonically

increasing.

Similarly from above we can show that

lim(–t
n 
) = Sup {–t

n 
| n�N}

We know if x is bounded and non-empty set in R and if a<0,

ax = {ax | x�x} then

inf (ax) = a Sup x,

Sup (ax) = a Inf x

So lim (–t
n 
) = – Inf {t

n
 | n� N}

�  lim t
n
 = Inf {t

n
 } n � N = l

2

� < t
n 
> Converging to l

2

Corollary 1: If < x
n 
> is monotonically increasing and unbounded above then it is diverge

to �.

Proof :

Given < x
n
> is monotonically increasing and unbounded above sequence.

Suppose M�R, However larger.

� < x
n
> is unbounded above and monotonically increasing so � a m ��I+ s.t.

x
m
 > M       ---(1)

and x
n
 � x

m
      � n � m         ---(2)

From (1)  & (2)

� x
n
 > M   � n � m

� < x
n
 > diverge to �.

Corollary 2 : Every unbounded below monotonically decreasing sequence diverge to – �
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Proof :

Proof is easy for reader.

Corollary 3 : A sequence which is monotonic either convergent or divergent.

EXAMPLE

1. Show that the sequence 
3 7

4 8

n

n  is monotonic. Is it monotonically increasing or

decreasing ?

Sol. :

3 7

4 8n

n
x

n

1

3 1 7 3 10

4 8 4 12n

n n
x

n n

1

3 10 3 7

4 12 4 8n n

n n
x x

n n

=   
3n +  10

4 n + 3
 –  

3n +  7

4 n + 2b g b g

� � 
 +  12  n + 2

 <  0  n
1

4nb g b g
So, x

n+1
 – x

n
 < 0

� x
n+1

 < x
n � n

So the given sequence is monotonically decreasing.

Hence 
3 7

4 8

n

n  is monotonic.

2. Show that the sequence x1 = 1 and xn  =  2 +  x  ,  n  2n –1 �  is monotonic.

Sol. :

x
1
 = 1

xn  =  2 +  x    2 +  1 =  3 >  x1 1� � 1
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Now, let x
n
 > x

n–1

� 2 + x
n
 > 2 + x

n–1

� � 2 +  x    2 +  x  n n–1

� x
n + 1

 > x
n

So we have x
n+1

 > x
n
    � n�N.

Thus we have the given sequence is monotonically increasing. Hence given sequence is
monotonic.

3. Show that the sequence 1
1

�FHG
I
KJn

n

 is convergent.

Sol. :

Given sequence is 1
1

�FHG
I
KJn

n

  take x
nn

n

� �FHG
I
KJ 1

1

So, 

21 1
1 ...........

2n

n nn
x

n n

+ - - - -
n n – 1  . 2. 1

n
 

1

n

b g.......3
�

F
HG
I
KJ

n

�
�
F
HG
I
KJ �

F
HG
I
KJ
F
HG
I
KJ 1 +  1 +  

1
 1 –  

1

n
 +  - - - - +  

1

n
 

2
1

1
1

2
– –

n n

� � � FHG
I
KJ1

1
–

–n

n

xn� �
�
F
HG

I
KJ1 2

 1 +  1 +  
1

 1 –  
1

n +1
 +  - - - -

+ 
1

n +1
 

� �
F
HG

I
KJ �
F
HG

I
KJ � � � �
F
HG

I
KJ1

1

1
1

2

1
1

1
– – –

n n

n

n

Here x
n+1

 > x
n
 since term in x

n+1
 is greater than or equal to the corresponding term in x

n
 and

x
n+1

 has one more term than x
n
 which is + ve

So, x
n+1

 > x
n
  � n � N
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� Given series is monotonically increasing. Given sequence is bounded.  We have

xn �

F
HG
I
KJ

�
 1 +  1 +   

1–
1

n
 +  - - - - +

2

1

n
 

�
F
HG
I
KJ
F
HG
I
KJ � � �
F
HG

I
KJ1

1
1

2
1

1
– – –

–

n n

n

n

x
nn � � � � �

 1 +  1 +   
1

2
 +  

1

3
 +  - - - - +  

1

n – 1
 +  

1

� 1 +  1 +   
1

2
 +  

1

2
 +  - - - - +  

1

2
 2 n–1  which is G.P. after first term.

�
� FHG

I
KJ

 1 +  
1  1 –  

1

2

 –  
1

2

n

1

� F
HG

I
KJ � 1+  2 1 –  

1

2
  1 +  2 =  3

n

x
n
 < 3  � n � N

So, < x
n
> is bounded above.

Now < x
n 
> is monotonically increasing and bounded above.

Hence the given sequence xn

n

 =  1 +  
1

n
F
HG

I
KJ  is convergent.

lim 1 +  
1

n
 eF

HG
I
KJ �

n

 which lie between 2 and 3.

4. Show that the sequence 1 12, 2n nx x x  Converges to 2 ?

Sol. :

x1 =  2

Put  n = 1  in 1 2n nx x
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We have x2 =  2 x   =  2 2   2 =  x1 1�

Now suppose xn   xn+1�

� 2x
n
 < 2 x

n + 1

� � 2x   2xn n+1

� x
n + 1

 < x
n + 2 

     � n � N

So given sequence is monotonically increasing.

Since given sequence is monotonically increasing and 1 2x . So it is bounded below .

x1 2 =    2�

Let x
n
 < 2

� � 2 x   2n

� x
n + 1 

< 2     � n � N

So sequence is bounded above by 2 sequence is monotonically increasing and bounded.

Hence by Monotone Convergence theorem it is convergent.

Let    lim x
n
 = l   & lim x

n + 1
 = l

We have    xn+1 n = 2 x

xn�1
2  =  2 xn

lim  =  2 lim xnxn�1
2

l2 = 2l

� l2 – 2l = 0

� l (l – 2) = 0

� l = 0, 2

l � 0

x
1
 � x

n
 �  n

2  xn�

lim x  2n �

So l � 0  therefore l = 2

Hence the sequence converging to 2.
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5. Show that the sequence x1 3
 =  1,  x  =  

4 +  3 x

 +  2 x
 ,  n  1n+1

n

n

�  is convergent ? What is

the limit of this sequence ?
Sol. :

We have to show that given sequence is monotonically increasing and bounded above to

show monotonically increasing we use mathematical induction method.

x1 3
 =  1,  x  =  

4 +  3 x

 +  2 x
 ,  n  1n+1

n

n

�

x
1
 = 1

x2 3
 =  

4 +  3  1

 +  2  1
  

7

5
 >  x  =  11

�
�

�

Let  x
n
 < x

n + 1

xx�2 –  x  =  
4 + 3 x

3 +  2 x
 –  

4 +  3 x

3 +  2 xn+1
n+1

n+1

n

n

     1 112 8 9 6n n n nx x x x

1 1

1

12 8 9 6

3 2 3 2
n n n n

n n

x x x x

x x

�
�

� 
x  x

 x  3 +  2 x
  0n+1 n

n+1 n

–

3 2b g b g
because x

n+1
 > x

n

So x
n+1

 > x
n+1

By Mathematical Induction sequence is monotonically increasing.

Now we show that the given sequence is bounded

x1 =  1  
3

2
�

Let    xn   
3

2
�
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xn� �
�1 3 2

   
4 +  3 x

  x
n

n

�  
3

2
 –  

1

2 3 +  2 xnb g

� 
3

2
                               [ �x

1
 = 1 and sequence is monotonically increasing so x

n
>1 so

         
1

2 3 +  2 x
  1

nb g �   ]

So by induction given sequence is bounded above by 
3

2
 . It is bounded below by 1. It is

bounded.

Hence by monotone convergence theorem.

Given sequence is Convergent.

Let the limit of sequence is l.

So lim x  =  lim 
4 +  3 x

   xn+1
n

n3 2�

lim x  =  
4 +  3 lim x

   lim xn+1
n

n3 2�

�
�

�
 =  

4 +  3 

   3 2�

� �   =   2�

Since � � x
n
 � n � N,

So, � =  2

1.11. Nested Interval Theorem (Cantor’s Intersection Theorem)

If we have a sequence <I
n
 = [x

n
 , y

n
] > of closed interval s.t. I

n+1
 C I

n
 � n � N, and

lim [y
n 
–x

n
] = 0 then In

n 1�

�

�  Consists of exactly one point.
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Proof :

We have I
n + 1

 = [x
n + 1

 , y
n + 1

 ] C I
n
 = [x

n
 , y

n
 ]   � n � N

�� x
n
 � x

n + 1
 � y

n + 1
 � y

n
    � n � N

We conclude that sequence < y
n 
> is monotonically decreasing bounded below by x

1
 so it

is converges to its greatest lower bound. Similarly < x
n
> is monotonically increasing

bounded above by y
1

So it is converges to its least upper bound.

But it is given that

lim (y
n
 – x

n
 ) = 0

so lim y
n
 = lim x

m
 = � (say)

So we have

x
n
 ����� y

n
 � n

� �����x
n
 , y

n
]

� �����
n 
 � n

� �
�

�

    In
i 1

� �

Let   �1 n
n 1

   I�
�

�

�

and ��= �
�������–  �����|y

n
 – x

n
|    � n � N

Since  lim |y
n
 – x

n
| = 0

So ���–  ���= 0

or ��=  �

Thus I
n 1�

�

�  Contains exactly one point.

Monotone Subsequence Theorem :

Definition : Let < x
n 
> is any sequence then x

m
 is called the peak in < x

n
 > if x

m
 � x

n
   �

n � m.

Theorem1 : Every sequence has a monotonic subsequence
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Proof :

We proof this theorem with two cases.

Let < x
n
> be any sequence.

Case (a) : When < x
n 

> has finite no (possibly zero) of peaks. Let these are

X   X  ..... Xn n n1 2 r
, ,

 
with n

1
< n

2 
< .... < n

r .
. Now there are no other peaks in < x

n 
> Take the

term Xnr+1
with n

r+1
 immediate comes after n

r
. It is not peak so we have

Xnr + 2
 s.t. 

r+3 r+2n nX > X

Now Xnr + 2
 is not a peak so we have X  Xn nr + 3 r + 2

�

Continue this manner we have a monotonic subsequence X  X  .....n nr + 1 r + 2
� �

Case : When < x
n
> has infinitely no. of peaks.

Let, X  X  .....  X  .....n n n 1  2  r
, ,  are infinitely many peaks with

n
1
 < n

2
 < ....... < n

r
 <......

Then by definition of peak we have

X  X  .....   X   .....n n n 1  2  r
� � � �

So the subsequence X  X  .....   X   .....n n n 1  2  r
� � � �  is monotonic.

Theorem 2 : Every bounded sequence has a convergent subsequence.

Proof :

Let < x
n
 > be any bounded sequence. By Monotone subsequence theorem < X

n
> has

monotone subsequence Xnk
 (say)

Since <x
n
> is bounded so its subsequence Xnk

 is also bounded. Now Xnk
 is a

subsequence of <x
n
> s.t. it is bounded and monotonic.

So by monotone convergence theorem Xnk
 is convergent.

Subsequence Xnk
 of <x

n
> is convergent. Hence Every convergent sequence has a

convergent subsequence.

1.12. Limit point of a sequence :

Let < x
n 
> be any sequence. A no. a ��R is a limit point of <x

n
>
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if all neighborhood of ‘a’ contains infinite no. of terms of < x
n
>.

Or we can say that a ��R is a limit point of < x
n
> if for Every ��> 0, x

n
 � ] a ��, a + � [

for infinitely many value of n.

” Note :

1. It a is a limit point of <x
n
> then it is not necessary that a is any term of <x

n
> .

2. Limit point of <x
n
> is different from the limit of sequence.

3. a � R is a limit point of sequence <x
n
> if � a subsequence xnk

 which converge to

a.

4. It <x
n
> is a sequence and lim x

n
 = a then a is only limit point of <x

n
>.

5. It <x
n
> is bounded sequence then set of limit point of <x

n
> is bounded.

IMPORTANT POINT

1. The sequence xn =  
1

n
 has only onl limit point ‘0’.

2. Sequence <(–1)n> has two limit point 1 and –1

3. Sequence < n > has no limit point.

1.13. Bolzano-Weirs tress Theorem for sequences :

Every bounded sequence has at least one limit point.

Proof :

We take the range set x = {x
n
 |n � N} of bounded sequence < x

n
>. Then X is bounded.

If X is finite. Then � a � R st. for infinitely many value of n, x
n
= a

So for given � > 0, x
n
� ] a – �, a + � [ for infinitely many value of n. Thus Every

neighborhood of a contains infinitely many terms of <x
n
>. Hence a is limit point of <x

n
>.

If X is infinite. Now X is infinite bounded set. Therefore X has one limit point ‘a’ (say)
(By Bolzano weirs tress theorem). So Every neighborhood of ‘a’ contains infinitely many
Clements of X. So we can say that given ��> 0  x

n
 � (a – �, a + �) for infinitely many

value of n. Thus a is the limit point of <x
n
>

Hence Every bounded sequence has at least one limit point.

Cauchy Sequence :

A sequence <x
n
> is said to be Cauchy sequence if to each ��>0 � a + ve integer m (�) s.t.

|x
n
 – x

m
| < �   �  n � m
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or |x
r
 – x

s
| < �   �  r, s � m

or |x
n + p

 – x
n
| < �   �  n � m   and  �  p � 1

Some Cauchy sequence are

(i)
1

n
 is a Cauchy sequence.

(ii)
1

n2  is a Cauchy sequence.

(iii)
–1b gn
n  is a Cauchy sequence.

(iv) < n2> is not a Cauchy sequence.

(v) <(– 1)n> is not a Cauchy sequence.

Theorem 1 : Every Cauchy sequence is bounded.

Proof :

It <x
n
> is a Cauchy sequence and � = 1 by definition we know to each �> 0 �a + ve

integer m s.t. |x
n
 – x

m
| < �   �  n � m.

So,  |x
n
 – x

m
| < �   �  n � m.

� x
m – 1 

< x
n
 < x

m + 1
   �  n � m.

Take r = min {x
1 
, x

2 
, ..... , x

m –1
 , x

m 
- 1}

s = max {x
1 
, x

2 
, ..... , x

m –1
 , x

m 
+ 1}

So, r � x
n
 � s �  n

Thus Every Cauchy sequence < x
n
> is bounded. Converse of the above theorem is not

true. take the sequence <(–1)n> . This sequence is bounded but not Cauchy sequence.

1.14. Cauchy General Principle of Convergence :

Every sequence is convergent iff it is Cauchy sequence

Proof :

Let <x
n
> is a sequence which is converge to a.

So, for given �> 0 , � a  + ve integer m s.t.

x an –   
2

     n  m�
�

� �

If we take n = m then
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2mx a

Now, |x
n
 – x

m
| = |x

n
 – x

m
 + a – a|

= |x
n
 – a – (x

m
 – a)|

� |x
n
 – a| + |x

m
 – a|

�
� �

 
2

 +  
2

  from above

= �
Thus we have |x

n
 – x

m
| � �  n � m

Hence by definition <x
n
> is a Cauchy sequence.

Conversely :

Let < x
n
> is a Cauchy sequence to each �> 0 � a + ve integer m (�) s.t.

x xn m– �
�

� �
2

     n m          ---(1)

Now, < x
n 
> is Cauchy sequence

� <x
n
> is bounded

� <x
n
> has at least one limit point a (say)

(Bolzano-weirs tress theorem)

� a is limit point of <x
n
> � �

� �F
HG

I
KJ x  a –  

3
 ,  a +  

3n  for infinitely many value of n (By

definition of limit point)

There exist r > m s.t. x  a –  
3

 ,  a +  
3r �

� �F
HG

I
KJ

�
�
� �

�
 a –  

3
  x  a +  

3r

� �
�

x ar –   
3

     ---(2)

� r > m s from (1)

x xr m–   
3

�
�

          ---(3)
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Now, |x
n
 – a| = |x

n
 – a + x

m
 – x

m
 + x

r
 – x

r
|

� |x
n
 – x

m
 | + |x

r
 – x

m
 | + |x

r
 – a|

�
� � �

 
3

 +  
3

 +  
3

= �  �  n � m

Thus we have |x
n
 – a| < �  �  n � m

Hence <x
n
> Converges to a.

EXAMPLE

1. Prove that the sequence xn �  
1

n
 is a Cauchy sequence.

Sol. :
Consider �> 0 is given.

x xn m–  =  
1

n
 –  

1

m

=  
1

m
 –  

1

n
  For    n � m

1 1
=

m n

� � �
�
� 

1

m
   if 

1
  m

So, choose m  
1

�
�

Thus � + ve integer m s.t.

|x
n
 – x

m
| < �   �  n � m

Hence xn �  
1

n
 is a Cauchy sequence.

2. Prove that the sequence xn �  
n +  1

n
 is a Cauchy sequence?

Sol. :
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Suppose ��> 0 is given

x xn m–  =  
n +1

n
 –  

m +1

m
 =  1+

1

n
 –  1 –  

1

m
 =  

1

n
 –  

1

m

=  
1

m
 –  

1

n
   ,    For  n � m

� � �
�
� 

1

m
       if    

1
  m

So, we choose  m  
1

�
�

Thus � a + ve integer m s.t. |x
n
 – x

m
| < �   �  n � m

Hence xn  =  
n +1

n
 is a Cauchy sequence .

Others Important Theorems :

Theorem 1 : Cauchy first theorem on limits :

Let <x
n
> be a sequence s.t. lim x

n
 = a

Then x x ........  x

n
 =  a1 2 n� � �

Proof :

First suppose y
n
 = x

n
 – a

taking limit as n ���
lim y

n
 = lim x

n
 – a

= a – a

= 0

Now, y
1
 = x

1
 – a

y
2
 = x

2
 – a

-------------

-------------

y
n
 = x

n
 – a

So, x
1
 + x

2
 + ----- x

n
 = (y

1
 + a) + (y

2
 + a) + ---- + (y

n
 + a)

� x
1
 + x

2
 + ----- x

n
 = (y

1
 + y

2
 + -----+ y

m
) + n a
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�
� � � � � �x x ........  x

n
 =  

y y ......... y

n
 +  a1 2 n 1 2 n

To prove the theorem it is sufficient to prove

lim 
y  y  .......+ y

n
 =  01 2 n� �

        ---(1)

Sequence < y
n 

> converges to 0 and Every convergent sequence is bounded so. < y
n
> is

bounded. So � a natural no. N s.t.

|y
n
| < N  � n.       ---(2)

For, (1) , 
y  y  .......+ y

n
 –  0  =  

1

n
 y y ........ y1 2 n

1 2 n

� �
� � �

=  
1

n
 y y ........ y  y1 2 m   n� � � � � ��ym 1 .......

� � 
1

n
 y  +  y  +  ......+ y  +   +.....+ y1 2 m   nym 1m r

Since lim y
n
 = 0, so to each �> 0 , � a  + ve integer m s.t.

y   
2

    n mn �
�

� �         ---(3)

So by using (2) and (3) we have

y y ........ y

n
  

Nm

n
 +  

n –  m
   n m1 2 n� � �

�
�

� �
b g

2n

=  
Nm

n
 +  1–  

m

n
 
2

F
HG
I
KJ
�

�
�

� �L
NM

O
QP 

Nm

n
 +  

2
                 1 –  

m

n
  1,   n  m�

y y ........ y

n
  

Nm

n
 +  

2
1 2 n� � �

�
�

Take a + ve integer M  
2mN

�
�

 so that 
mN

  
2�

�
�

  Where n > M

M
1
 = max {m, M}
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y y ........ y

n
  

2
 +  

2
 =  1 2 n� � �

�
� �

� , for n > M
1

So lim 
y y ........ y

n
 =  01 2 n� � �

Hence lim 
x x ........ x

n
 =  a1 2 n� � �

Converse of the Cauchy’s first theorem on limits is not true. we consider <x
n
 = (–1)n>

1 2

0 if n is even
.......

1
- if n is odd

nx x x

n
n

�
� � �

  lim 
x x ........ x

n
 =  01 2 n

But <x
n
> is not convergent.

Theorem 2:  Cauchy’s Second theorem on limit :

Let <x
n
> be a sequence s.t. x

n
 > 0 � n and lim x

n
 = a then lim x x ........ x  a1 2 n

1

n� � � �b g
Proof :

Consider <y
n
 = log n >

lim y
n
 = lim log x

n

= log a          ---(1)     [� lim x
n
 = a]

�   lim 
y y ....... y

n
 =  lim y1 2 n

n

� � �L
NM

O
QP      [Cauchy first theorem

on limits]

�
� � �F

HG
I
KJ lim 

y y ....... y

n
 =  log  a1 2 n     from  (1)

lim 
log  x  .......  

n
 =  log  a1 2 n� � �F

HG
I
KJ

log logx x
    [ (y

n
 = log x

n

�  n � m
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lim
. .....

 
log x     

n
 =  log a1 x xn2b g

lim log x  . x  .....  x  =  log a1 2 n

1

nb g

�  lim x  . x  .....  x  =  log a1 2 n

1

nb g

Theorem 3 : If <x
n
> is a sequence of positive terms and lim

x

x
n

n

 + 1  =  a then

lim   =  a n

1

nxb g
Proof :

We consider a sequence

y x
xn

1 1� � � � ,  y  
x

   n  2n
n

 –1
         ---(1)

Then we have

y y x
x x xn

n
1 1

1 2 2

,  y  
x

 
x

 ......
x

  
xn

x2
2 3 n–1

n–1

.........
–

� � �

y
1
, y

2
 ........... y

n
 = x

n
         ---(2)

Now, lim 
x

 =  an+1

xn

� �  
x

 =  lim yn
nlim

–x
a

n 1

Sequence (1) is + ve term sequence as x
n
> 0 � n thus by Cauchy second theorem on limits

we have

lim y   y  .......y  =  a1 2 n

1

n�b g

lim  =  a
1

nxnb g        from (2)

Theorem 4 : Cesaro’s theorem

If sequence <x
n
> converges to a

1
 and sequence <y

n
> converges to a

2
 then
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1 2 1 1
1 2

.......
lim n n nx y x y x y

a a
n

Proof :

Given lim x
n
 = a

1

and lim y
n
 = a

2

Consider  x
n
 = a

1
 + Z

n
      ---(1)

and | Z
n
| = t

n
          ---(2)

lim x
n
 = a

1
 + lim Z

n

a
1
 = a

1
 + lim Z

n

lim Z
n
 = 0

and lim t
n
 = 0

Since lim t
n
 = 0, So lim 

t t  +  ........+ t

n
 =  01 2 n�  (By Cauchy first theorem)        ---(3)

Now,  
1

1 1n
y y yn n x x x  1 2 n� � �– ......

=  
1

n
a Z y a Z y a Z yn n n1 1 1 2 1 1 1� � � � � �b g b g b g– .....    from   (1)

=  
1

n
a y Z y a y Z y a y Z yn n n n n1 1 1 2 1 1 1 1� � � � � �– ......

� � � � � � � 
1

n
 a  +  Z1 1y y y y Z y Z yn n n n1 2 2 1 1..... ....–b g b g ---(4)

Z y Z y ...... Z y

n
1 n 2 n–1 n 1� � �

 �
� � �

 
Z y Z y ...... Z y

n
1 n 2 n–1 n 1       ---(5)

Since <y
n
> Converges a

2
 so it is bounded. � a M�R+ s.t.

|y
n
| < M � n      ---(6)

So from (5) & (6)

0  
1

n
 Z y Z y ...... Z y  1 n 2 n–1 n 1� � � �  � � � 

M

n
 Z + Z ...... Z1 2 nm r

� � � � 
M

n
 t t ......  t1 2 nl q
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� 0 as n ���       from (3)

lim  
Z y Z y ....... Z y

n
 =  0

n

1 n 2 n–1 n 1

��

� � �
          ---(7)

taking lim as n � � of (4) we have

lim
......– 

x1y x y x y

n
n n n� � �2 1 1 � � � �  

a

n
 y  1lim .......y yn2

+ lim 
Z1y Z y Z y

n
n n n� � �2 1 1– ..... �

� � �L
NM

O
QP a  lim 

y y ....... y

n1
1 2 n

�
� � �

 lim 
Z y Z y ...... Z y

n
1 n 2 n–1 n 1

lim 
x y x y ...... x y

n
 =  a  a  +  01 n 2 n–1 n 1

1 2

� � �L
NM

O
QP

[� (lim y
n
 = a

2
 so, lim 

y y ...... y

n
 =  a1 2 n

2

� � �

and from (7)

Here,

lim 
x y x y ...... x y

n
 =  a  a1 n 2 n–1 n 1

1 2

� � �

EXAMPLE

1. Prove that lim 
1 +  

1

2
  

1

3
  .....   

1

3
n

 =  0
� � �

Sol. :
From Cauchy first theorem on limit it lim x

n
 = a then

lim 
x x ....... x

n
 =  a1 2 n� � �

lim x  lim 
1

n
 =  0n �
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So, lim 
1 +  

1

2
  

1

3
  .....   

1

n
n

 =  0
� � �

2. Show that 2 2 2

1 1 1
lim ......... 1

1 2n n n n

Sol. :

From sandwich theorem if <x
n
> , <y

n
> , <Z

n
> are sequences s.t. x

n
 � y

n
 � Z

n
  �  n

and lim x
n
 = lim Z

n
 = a then lim y

n
 = a

take 2 2 2

1 1 1
.........

1 2
ny

n n n n

� take 2 2
,

1
n n

n n
x z

n n n
 two

Sequence then

y
n

n �
� � �

 
1

n
 +  

1

n
 +  ......+ 

1

n2 2 21 2

�
�

�
�

� �
� �

1

1

1

1

1

1 12 2 2n n n
.....  =  

n

n2

� �
�

 y
n

n 1
n 2              ---(1)

and
1
2n n n n� �

� �
�

 +  
1

n
  

1

n2 2
......

�
� � �

1

1

1

2

1

n
 

n
 +  .....+

n
 =  y

2 2 2 n
n

n

n n
  y

2 n
�

�            ---(2)

From (1) & (2)

x
n
 � y

n
 � Z

n
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and lim  x
n

n n
 =  lim 

1
 =  1n 2

�
� �1

1
n

lim  Z  lim
n

n 1
 =  lim 

1
 =  1n 2

�
� �1

1

n

lim x
n
 = lim Z

n
 = 1

By Sandwich thearem

lim y  lim 
1

n 1
 +  

1

n 2
 +  .....+ 

1

n n
 =  1n 2 2 2

�
� � �

L
NMM

O
QPP

3. Prove that lim
n��

� �F
HG

I
KJ 

2

1
  

3

2
  

4

3
 ........

n

n – 1
 =  1

1

n

Sol. :

Take xn =  
2

1
  

3

2
  

4

3
 ........

n

n – 1
� �F

HG
I
KJ

Then xn+1 =  
2

1
  

3

2
  

4

3
 ........

n

n +1
  

n +1

n
� � �

lim
x

xn

n+1 =  lim  

2

1
  

3

2
  

4

3
 ........

n

n – 1
  

n +1

n
2

1
  

3

2
  

4

3
 ........

n

n – 1

� � �

� �

lim
n +1

n
=  lim  1+

1

n
 =  1

F
HG
I
KJ

Since we know that if <x
n
> is a sequence of positive terms and lim

x

x
 =  an 1

n

�  then

lim x  =  an

1

nb g
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So lim x
n
 = 1    i.e.   lim 

2

1
  

3

2
  

4

3

n

n – 1
 =  1� �F

HG
I
KJ........

4. Find the limit of sequence n
1

nb g  ?

Sol. :

Consider x
n
 =n

x
n+1

 = n + 1

There fore lim 
x

 =  lim 1+
1

n
n + 1

xn

F
HG
I
KJ  = 1

Hence lim x =  lim n  =  lim 
x

x
 =  1n

1

n

1

n n + 1

n

b g b g

5. Show that lim 
n +  1

n
 =  1.

Sol. :

Given y =  
n +  1

n
 n

y =  
n +  1

n
 n

�  y =  1+
1

n
 n

�  y =  1+
1

n
 > 1n

�  1 <  y =  1+
1

nn         ---(1)

Also  y =  1+
1

n
 <  1 +  

1

2nn
F
HG

I
KJ       ---(2)

From  (1) & (2)
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1 <  y  
n +1

n
   1 +  

1

2nn � � FHG
I
KJ

take x
n
 = 1 and Z =  1 +  

1

2nn
F
HG

I
KJ

So, lim x
n
= lim 1 = 1

and lim Z =  lim 1 +  
1

2n
 =  1n

F
HG

I
KJ

By Sandwich theorem

lim y
n
 =1

6. Determine lim 1 +  2 3 ...... n
1

2

1

3

1

n� � �
F
HG

I
KJ ?

Sol. :

take x  nn

1

n�

lim x  lim n  =  1n

1

n� b g

Therefore lim 
1+ 2  +  3 .......  n

n

1

2

1

3

1

nb g b g b g� �
L

N
MMM

O

Q
PPP

= lim x
n
 = 1 ( By Cauchy first theorem on limit.)

EXERCISE : 1

1. Write the nth term of the following sequence --

(a) < 2, 4, 6, ......> (b)
1

2
,   

1

4
,   

1

6
,.......

(c) <1, 1, 1, .....> (d) <13, 23, 33,......>

2. By definition, show that the sequence 
1

n

2

 Converges to ‘0’?
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3. By definition, show that the sequence 2

1

x  converges to ‘0’.

(a) Sequence 
3n + 4

2n +1
 Converges to 

3

2

(b) Sequence 
1

n2 �1
 Converges to 0

(c) Sequence 
n – 1

2n

2

2 � 3  Converges to 
1

2

(d) Sequence 
2n

n � 3
 Converges to 2.

4. By definition prove that

(a) Sequence <– n2> diverges to – �
(b) Sequence <2n> diverges to �

5. Find the limit of the following sequences

(a)
sin n

lim
n

(b) lim 
n 3n 5

2n 5n 7

2

2

� �
� �

(c) lim 
1

3n

6. Show that the sequence 
2n2 �

�
3

12n  Convergent ?

7. Show that the sequence 
–1 n

n 1

nb g
�  divergent ?

8. Show that the sequence 1

2

2

4

n

n n
 is convergent.
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9. Show that the sequence n �1 –  n  is convergent.

10. Prove that the sequence < rn > is converges to 0 when | r | < 1.

11. Show that the sequence x1 2� � ,  x  2 +  xx + 1 n  Converges to + ve roots of the x2 – x

– 2 = 0.

12. Show that < x
n
> defined be x  =  

1

1
 +  

1

2
 +  ........+ 

1

nn � � �
 is Convergent.

13. Show that the sequence <x
n
> defined by  x

n 
= 

1

1
 +  

1

2
 +  ........+ 

1

n� � �
  is Convergent.

14. Show the sequence x
1
 = a > 0 x  

ab  +  x

a 1n + 1

2
n
2

�
�

 ,   b > a,

n � 1 Converges to b.

15. By definition show that the following sequences are Cauchy sequence :

(a)
–1

n

nb g
(b) �

� �
� 1 +  

1

2
 +  .......+ 

1

n
 

16. Prove that the sequence <x
n
> where x  +  

1

2
 +  

1

3
 +  .........+ 

1

nn � 1  can not converges.

17. Let a sequence of positive numbers <x
n
> defined by x  

1

2
 x  n 3n n–1� � � �xn–2b g  then

prove that the sequence is converges and has the limit 
1

3
 x1 � 2 2xb g .

18. Find the limit point of the sequence 1
1

1

�FHG
I
KJ

�

n

n

19. (a) Show that
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lim 
1

2n
 +  

1

2n
 +  .......+ 

1

2n
 =  

1

22 2 2� � �

L
NMM

O
QPP1 2 n

(b) Show that

lim 
1

n
 +  

1

n
 +  .......+ 

1

n
 =  

� � �
L
NM

O
QP �

1 2 n

20. (a) Prove that lim 
x

 =  0 ,     x R
n

�
�

n

(b) Prove that lim 
n

n
 =  0n

�

21. Show that 

1

n

3

3n
lim

n

ANSWERS : 2

(1) (a) 2n (b)
1

2n

(c) 1 (d) n3

5. (a) 0 (b)
1

2

(c) 0

18. e.

***
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Chapter 2

REAL NUMBER SYSTEM

2.1. Introduction :
In this chapter we shall study some important properties of real numbers systems. Firstly,
we discuss the algebraic property of real number system. We discuss the absolute value
notion which is depend on the order property of R. We will also study Nested interval
property and we will also use this property for proving the uncountability of R.

In short, we shall study the basic properties of real number systems is three categories.

(a) Field axiom

(b) Order axiom

(c) Completeness axiom.

(a) Field axiom :Let R is set of real number with two  binary operation addition ‘+’ and
‘multiplication’. satisfy the following axiom.

(i) � a, b � R, a + b � R  i.e. R is closed w.r.t. addition.

(ii) � a, b, c � R, a + (b + c) = (a + b) + c, addition  is associative.

(iii) � a � R, ��an element ‘0’ in R called zero clement s.t. a + 0 = 0 + a = a.

(iv) For each a in R � an element – a in R s.t.  a + (– a) = 0 = – a + a

(v) � a, b � R, a . b � R  i.e. R is closed w.r.t. multiplication.

(vi) � a, b � R, a . b = b . a ,    R is commutative w.r.t. multiplication.

(vii) � a, b, c � R,  a . (b . c) = (a . b) . c i.e. multiplication is associative.

(viii)(Existence of unit element) �  a in R, � an element 1 � 0 in R s.t. a . 1 = 1 . a = a

(ix) (Existence of inverse) Each non-zero element a in R possess multiplicative inverse
i.e.

� a, � R, a � 0 � an element b � R s.t. ab = 1, b is called multiplicative. inverse of
a and is denoted by a–1

(x) � a, b, c ��  a . (b + c) = a . b + a . c and (b + c) . a = b . a + c . a   i.e.

multiplication is distributive over addition. Now we can say that (R, +, . ) is a field. The
above axioms are called field axiom. Infield axioms first four axiom are related to addition
and the axioms from (v) to (ix) are related to multiplication. In (iii) axiom element ‘0’ ie.
Zero element is unique for all elements. In (iv) axiom ‘– a’ is called negative of a.
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Theorem :

1. If a, b � R s.t. b + a = a then b = 0

2. If a, b � R s.t. a, b � 0 and a . b = b

Then a  = 1

3. �  a � R, a . 0 = 0

4. a . b = 0 � a = 0 or b = 0

Proof :

1. b = b + 0 From field axiom (iii)

b = b + [a + (– a)] From field axiom (iv)

b = [(b + a)] – a From field axiom (ii)

b = a + (–a) [Given b + a = a]

b = 0 From field axiom (iv)

2. a = a . 1 From field axiom (viii)

a =  a  b  
1

b
� �FHG

I
KJ From field axiom (ix)

a =  a  b   
1

b
� FHG

I
KJb g From field axiom (vii)

a =  b  
1

b
� (given ab = b)

a = 1

3. a + a 0 = a + a 0

= a . 1 + a 0 From field axiom (viii)

= a (1 + 0) From field axiom (x)

= a . 1

= a

� a . 0 = a From theorem (i)

4. To prove this theorem it is sufficient is show if a � 0 then b = 0

take a � 0

a . b = 0

a–1(a . b) = a–1. 0

(a–1 . a) b = 0 From field axiom (viii) and

From theorem (3)
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1 . b = 0 From field axiom (ix)

b = 0

(I) Subtraction in R :

If  a . b � R, then the operation subtraction is denoted by a – b and defined as a – b = a +
(– b)

For subtraction between a & b, a – b � b – a

(II) Division in R :

If a, b � R, (b � 0) the division is denoted by 
a

b
 or a � b or a/b and defined as 

a

b
 =  a  

1

b
�

if  b = 0 the division is not allowed

2.2. Important properties of real numbers :

Real numbers have some important properties which are necessary for us

(i) If a + b = a + c then b = c

(ii) – (– a) = a

(iii) If a � 0 and a . b = a . c then b = c

(iv) If a � 0 then 
1
1

a
 =  a

(v) If a & b are non-zero real numbers then a . b is also non-zero

(vi) For a, b ��R, a (–b) = – (a .b) and (– a) . b = – (a . b)

(vii) For a, b � R, (– a) (–b) = ab

(viii)From a, b � R, – (a + b) = – a – b

(ix) For two non-zero real number a, b, 
1

a  b
 =  

1

a
  

1

b�
L
NM
O
QP �
L
NM
O
QP

(x) If a is a non-zero real number and is any real number then x =  b
a  in R is a unique

solution of the equation ax = b

(xi) If a, b � R then x = b – a � R is a unique solution for the equation x + a = b

2.3. Integral power of real number :

Let n is any positive integer and a �R then we define, particularly a1= a, a2 = a . a, a3 = a2.a
= a . a . a ....... In general an = a . a . a...... n times.

We write a0 = 1

If a � 0 then a–n = (an)-1 = (a–1)n.
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(b) Order axioms for real numbers :

The following axioms are satisfied by order relation greater than (>) between two real
numbers :

(i) Let a,b�R, then only one of the following.

a = b, a > b, a < b (Trichotomy)

(ii) If a, b, c � R then a > b, b > C ��a > c (transitivity)

(iii) If a, b, c � R then a > b � a + c = b + c (monotone property for addition)

(iv) Let a, b, c�R. If a > b, c > 0 then ac > bc. (Monotone property for multiplication)

Now from above we can say that field of real (R, + , . ) is an ordered field (R, + , . , > )

The system C of all complex number is a field but not an ordered field.

2.4. Some Important Definition :

(i) a � R is + ve if a > 0

(ii) a � R is – ve if a < 0.

We denote the set of all + ve real numbers by R+ and set of all – ve real numbers by R–

So, R = R+ � R–  � {0}.

(iii) Let a and b are any two real number then a�b if a < b or a = b

(iv) If a, b�R then a � b if a > b or a = b.

(v) Between two real numbers a and b the order relation ‘less then’ (<) is defined as a <

b if b > a

2.5. Some Properties for order relation :

(i) If a is any + ve real number and b is any negative real number then a > b.

(ii) � a�R, only one of the following is true ---

a < 0, a = 0 , – a < 0

(iii) � a�R, only one of the following is true ---

a > 0, a = 0 , – a > 0

(iv) If a, b ��R+ then a + b > 0 and ab > 0

(v) If a , b are any two negative real number then a + b and ab are negative real number
and + ve real number respectively.

(vi) a is less than b and b is less than c then a is less than c. i.e. if a < b and b < c then a <
c.

(vii) a < b iff a + c < b + c

(viii)If a < b and c a�R, R– then a c > bc

(ix) a�R– iff – a�R+ , a�R+ � – a�R– .

(x) a is greater than b (a > b) iff – a is less then – b ( – a < – b)
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(xi) If a > b and b > 0 then 
1 1

0< <
a b

.

(xii) a � 0 then a2 > 0

(xiii)If a, b ��R+  and a > b then a2> b2.

If a, b ��R- and a < b then a2 > b2.

2.6. Some Subset of R :

1. Natural numbers set (N) :
Inductive Set : Any subset M of R is said to be Inductive set if (i) 1�M and (ii) r � M �
r + 1 � M.

Natural number set N is the smallest inductive subset of R.

From above hypothesis 1 � N � 1 + 1 = 2 � N, 2 � N � 2 + 1 = 3 � N , 3 � N � 3 + 1
= 4 � N........

Thus we have N = {1, 2, 3,.......}

2.7. Mathematical Induction Principle :

Any preposition P (k) is true � k � N provided

(i) When k = 1, the preposition is true i.e. P (1) is true

(ii) If P(n) is true � n � N then P(n + 1) is true.

2. Set of Integer Z :
Z = {0, � 1, � 2,........} C R is

said the set of integer. We have N  Z  R.

3. Set of Rational Numbers :
We denote the set of rational number by Q and defined as

Q =  
p

q
 p,  q  Z,  q  0� �
RST

UVW
We have N  Z  Q  R

4. Set of Irrational Numbers :

a � R is irrational number if it is not rational number. Thus R – Q set is irrational numbers
set.

EXAMPLE

1. Prove that 2  is irrational number ?

Sol. :

Consider 2  is rational
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So, 2 =  
p

q  where, p, q � Z, q � 0

and p, q have no factor in common.

Now, 
p

q
 =  2  

p

q
 =  2  p  =  2q

2

2
2� �

� p2 is even

p should be even.

taken p = 2 m

Since P2 = 2 q2

So 4 m2 = 2 q2

or q2 = 2 m2

So q should be even taken q = 2m

Since there is a common factor between pand q which is contradiction.

Thus 2  is irrational number..

2. Prove that 8  is not rational number ?

Sol.:

Consider 8  is rational number

So 
p

8 =
q , p, q are integers prime to each other and q �� 0.

Since 
p

8 =
q

p
2 < 8 = < 3

q

� 2 q < p < 3 q

� 0 < p – 2 q < q

p – 2 q is + ve integer and less than q

So, 
p

8 p- 2q = p- 2q
q
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=  
p

q
 –  

2pq

q

2

=  
p

q
  q –  2p

2

2 �

2

= 8 q- 2p 8
p

q
�

= integer

Which is contradiction. Therefore 8  is not a rational number..

2.8. Intervals :
1. Closed interval : Let a, b ��R s.t. a < b then we define the closed interval the set {x |a �

x � b}

We denote it by [a, b]. a & b real no also lie in this set.

2. Open intervals : Let a, b ��R s.t. a < b then the set {x | a < x <b} is called the open interval
and w denote it ] a, b [ or (a,

 
b). a, b real no. do  not lie in this set.

3. Semi open or Semi closed interval : The set defined by {x | a < x � b} and {x | a � x < b}
are said to be semi open or semi closed and is denoted by ] a, b [ and [a, b[ respectively.

4. Closed rays : The sets defined by {x | a � x}

and {x | x � a} are called closed rays. we can write these as [a, �[ and ] – �, a] respectively.

5. Open rays : The sets defined by {x | a < x} and {x | x < a} are called open rays and we can
write these as ]a, �[ and ] – �, a [ respectively.

6. Length of Intervals : The length of an interval with end point a and b (a< b) is b – a.

Thus the intervals (a, b) [a, b], (a, b], [a, b) have the length b – a. The length of intervals (a,
�), [a, �), (– �, a), (– �, a)] (– �, �) is infinite. These intervals are infinite intervals.

7. Absolute Value :

The absolute value of a real no. x is denoted by |x| and defined as

, 0

, 0

x
x

x

e.g. 5, – 5 � R so the absolute value of 5 is | 5 | = 5 since 5 > 0. for –5 the absolute value
is | –5 | = – (–5) = 5 since – 5 < 0

Note :  |x| = 0 � x = 0

Theorem on Absolute value :
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It  x, y � R then

(i) | x | � 0 (ii) | x | � x

(iii) | x |2 = x2 = | – x |2 (iv) | x | = max {x , – x}

(v) | x | = |– x | (vi) x � – | x |

(vii) | x  y | = | x | . | y | (viii)| x + y |  | x | + | y |

Triangle inequality

(ix) | x – y | � | x - y

(x) | x – y | < � � y – � < x < y + �  Where � > 0

Proof :

(i) Let x � R , to prove | x | � 0

we know  
, 0

, 0

x
x

x    ,  By definition.

If x � 0 then | x | = x

� | x | = x � 0

� | x | � 0

If x � 0 then | x | = – x

� | x | = – x � 0       [ � – x is non -negative]

� | x | � 0

Hence | x | � 0 �  x � R

(ii) To Prove | x | � x

If x = 0,  then we have to prove nothing

be cause | 0 | = 0 so | x | = x in this case.

if x > 0 then | x | = x by definition of absolute value.

If x < 0 then | x | = – x > x

[� x is negative so – x is + ve quantity]

Hence | x | � x �  x � R

(iii) To Prove | x |2 = x2 = | – x|2

If x � 0 then  | x | = x By definition

� | x |2 = x2

If x � 0 then | x | = – x  By definition

� | x |2 = x2

So, � x � R, |x|2 = x2 ...(1)
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If x � 0 then – x � 0  So, |– x | = – (–x) By definition.

� | – x |2 = x2

If x � 0 then – x � 0  So, | – x | = – x By definition

� | – x |2 = x2

So, �  x � R, | – x |2 = x2 ...(2)

So from (1) & (2)

� x � R, |x|2 = x2 = | – x |2

(iv) To Prove | x | = max { x, – x}

By definition of absolute value  x  =  
x      ,   x  0

– x   ,   x  0

�
�

RST
thus in Every case | x | is greater of two real no. x, – x.

(v) To Prove | x | = | – x |

From (iv) theorem we have | x | = max {x, – x}

Now replace x by – x we have | – x | = max {– x, x} = | x |

(vi) To Prove x � – | x |

If x � 0 then by definition of absolute value we have

| x | = x

So, x � – | x |

If x � 0 then by definition of absolute value we have

| x | = – x, – x is +  ve quantity

� – | x | = x

Thus � x � R, We have x � – | x |

(vii) To Prove | x y | = | x | | y |

From theorem (iii) we know |a|2 = a2 � x � R

So, | x y |2 = (x y)2 � | x y |2 = x2 y2

� | x y |2 = | x |2 | y |2

� | x y |2  = (| x | | y |)2

� | x y | = � | x | | y |

[ � | a | � 0 � a � R so we take + ve sign]

(viii)To Prove | x + y | � | x | + | y |

From the theorem (iii) we know | a |2 = a2  � a � R

So,

| x + y |2 = (x + y)2  = x2 + y2 + 2 xy � | x |2 + | y |2 + 2 | x | . | y |
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[From theorem (ii) | a | �  a � a � R]

= (| x | + | y |)2

� | x + y |2 � ( | x | + | y |)2

� | x + y | � | x | + | y |    [ � | a | � 0 � a � R so we take + ve sign]

(ix) To Prove | x – y | � | | x | – | y | |

� x = x

�  x  = x – y + y

� | x  | = | x – y + y |

� | x | � | x – y | +  | y |       From theorem (viii)

� | x | – | y | � | x – y | ...(1)

Now, y = y

� y = y – x + x

� | y | = | y – x + x | � | y | � | y – x | + | x |

� | y | – | x | � | y – x |

� – ( | x | – | y |) � | x – y| ...(2)

From (1) and (2)

| x – y | � max {| x | – | y |, – ( | x | – | y |)}

= | | x | – | y | |

� | x – y | � | | x | – | y | |      �  x . y � R

(x) To Prove | x – y | < � � y – � < x < y + �
Since we know that | x | = max [ x, – x }

So, | x – y | = max {(x – y), ( y – x)} ...(1)

It is given that | x – y | < �
So | x – y | < � � max { ( x – y), ( y – x)} < �   From (1)

� ( x – y ) < � , ( y – x) < �
� x < y + �, y – � < x

� y – � < x < y + �
Particularly if we take y = 0 then

we have | x | < � � – � < x < �

EXAMPLE

1. Show that | x – y |  | x | + | y |

Sol.:
We know � | x | + | y |
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So, | x – y | = | x + (– y) |

� | x | + | – y | [� | – a | = | a |]

= | x | + | y |

Thus x- y x + y

2. Show that | x + y |2 + | x – y |2 = 2 | x |2 + 2 | y |2, � x, y  R

Sol.:

Since we have | a |2 = a2 � a � R , so

| x + y |2 + | x – y |2 = (x + y)2 + (x – y)2

= 2x2 + 2y2

= 2 | x |2 + 2 | y |2

3. Let k is any positive real number and | x – y | < k  �  > 0 then show that x = y

Sol.:
Consider x � y

take � =  
1

2k
 x – y

Clearly � > 0 since k � R+ & |x – y| > 0

Now, |x – y| < k � � � > 0 (given)

� | x – y | < k . 
1

2k
 | x – y |

� | x – y | < 
1

2
 | x – y |

Which is not possible. So our assumption is not correct. Therefore we must have x = y.

4. Show that 
x

y y
 =  

x
  ,   y  0�

Sol. :
Since we have | a |2 = a2 for absolute value of a � R So

x

y

x

y

2

 =  
F
HG
I
KJ

2

�   
x

y

2

2
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�   
x

y

2

2

� �
F
HG
I
KJ 

x

y
 

x

y

2 2

� � � 
x

y
  

y

x

� � � � 
x

y
  

y
   ,  y  0

x
  leaving – ve sign

2.9. Bounded and unbounded sets :

Let R be a set of real numbers. Any subset x of R is said to be bounded if it is both
bounded above and bounded below.

x is bounded above if � a real no. r s.t. r � x � x � X . If r exist then we say that r is upper
bound of x. Every real numbers which are greater than r are called the upper bound of x.
Thus any set which is bounded above have infinitely many upper bound. The upper bound
which is minimum in all of these upper bound is called least upper bound or supremum of
set x. Thus a upper bound r

1
 is supremum of set x.

If any upper bound ‘r’ of x s.t. r < r
1
.

x is bounded below if � a real no. s, s.t.

s � x � x � x . If s exist then we say that s is lower bound of x. Every real number which
are less than ‘s’ are the lower bound of x. Thus any set which is bounded below have
infinitely many lower bound. The lower bound which is maximum in all of these lower
bound is called greatest lower bound or infimum of set x. Thus a lower bound s

1
 is infimum

of set x if any lower bound s of x s.t. s
1
< s.

Thus we can define bounded set as

‘A set x is bounded iff � real numbers r & s, s.t. s � x � r � x � x.

Now, A set x is unbounded if it is not bounded i.e. if it is not bounded above or not
bounded below.

IMPORTANT POINT

(i) Empty set � is bounded although it has no supremum and infimum.

(ii) Any non-empty finite subset of R is bounded.

(iii) Every singleton set is bounded. The sup. and inf. of this set is the single element of this
set.
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(iv) R+ is bounded below but not bounded above.

(v) R–  is bounded above but not bounded below.

(vi) R is unbounded. It is neither bounded above nor bounded below.

(vii) I = set of integers is unbounded set .

(viii)I+ is bounded below but not bounded above.

(ix) I–  is bounded above but not bounded below.

(x)
1

n
 n  N�RST

UVW  is bounded set.

2.10. Some important properties of supremum and infimum of subset of R :

(i) Any bounded subset of R has unique supremem and infimum

(ii) It is not necessary the supremum and infimum of a bounded subset X of R are the elements
of X. They may be different from the elements of X.

(iii) For a non-empty bounded subset X of R, sup (x) � inf (x)

EXAMPLE

1. Prove that the set of all positive real numbers is not bounded above.
Sol. :

Let r is upper bound of R+ (if possible) so 1 � r. Now we can say that r > 0. therefore r + 1
> 0 r + 1 is positive real number which presents that r + 1 > upper bound r which is
contradiction because for an upper bound r

1
 � r �  r

1
 � R+.

Thus r is not upper bound. Hence set of + ve real numbers is not bounded above.

We can show that set of all negative real numbers is not bounded below. For this we
consider s is lower bound of R– (if possible). Then  s � – 1. Therefore s – 1 < 0, s - 1 is
negative real number we can say that s – 1 < s (lower bound of R–) which is contradiction
because for a lower bound s

1
 � s �  s

1
 � R–. Thus s is not lower bound. Hence set of – ve

real numbers is not bounded below.

2. Prove that for a set supremum and infimum (if exist) are unique ?

Sol. :
We consider r

1
 and r

2
 are supremum of set X . Since r

1
 and r

2
 are supremum so these are

upperbound of X.

if r
1
 is sup. then r

1
 � r

2
 ( r

2
 is upper bound) ...(1)

if r
2
 is sup. then r

2
 � r

1
 (r

1
 is upper bound) ...(2)

from (1) and (2)

r
1
 = r

2

Hence supremum is unique.
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We consider s
1
 & s

2
 are infimum of set X. then s

1
 & s

2
 are lower bound of set X.

If s
1
 is infimum then s

1
 � s

2
 (lower bound) ...(3)

If s
2
 is infimum then s

2
 � s

1
 (lower bound) ...(4)

From (3) & (4)

s
1
 = s

2

3. Determine the supremum and infimum of the set { 5 } ?

Sol. :

The upper bound of the set { 5 } are 5 and all the real numbers which are greater than 5.
The minimum number in all of these upper bound is 5. So 5 is the supremum. Similarly
the lower bound of the set { 5 } are 5 and all the real numbers which are less than 5. The
maximum number all of these lower bound is 5. So 5 is infimum of the set { 5 }. Hence 5
is supremum as well as infimum of the set { 5 }

4. If X is any subset of R s.t.

(i) X is bounded and non-empty

(ii) Sup x = Inf x

Then what can you say about X ?

Sol. :

Given x is non- empty and bounded subset of R and Sup X = Inf X

We take Inf X = Sup X = r

� r is lower bound and upper bound of X.

� r � r
1
 � r

1
 � X ...(1)

& r � r
1
 � r

1
 � X ...(2)

From (1) & (2) r
1
 = r � r

1
 � X

��r is the only element belongs to X.

Thus we can say that X is singleton set { r }

5. Find supremum and Infimum of the set

x = { x � I | x 2 � 36}

Sol. :

x = { x � I | x2 � 36}

or x = { 0, � 1, � 2, � 3, � 4, � 5, � 6}

which is finite subset of set of real numbers from this set we observe that the minimum
number is – 6. The real numbers which are less than – 6 and – 6 are lower bound of X. The
maximum number in all of these lower bound is – 6. Thus – 6 is the greatest lower bound
of X i.e. – 6 is the infimum of X. The maximum number in the set x is + 6. The real
numbers which are greater than 6 and 6 are upper bound of set x. The minimum number in
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all of these upper bound is + 6. So + 6 is the least upper bound i.e. it is the supremum of
the set X.

Hence Inf X = – 6 , Sup X = + 6.

6. Write the supremum and infimum for the set x = { 1, 3, 5, 7, 9}

Sol. :

9 is the upper bound for x because � x � x , x � 9. Any number x
1
 < 9 is not upper bound

of x. So 9 is the supremum for x . 1 is the lower bound of set x because � x � x , 1 � x.
Any no. x

2
 > 1 is not lower bound of x so 1 is the infimum of the set x.

7. Is

(i) Every infinite set unbounded ?

(ii) Every subset for an unbounded set is unbounded?
Sol. :

(i) No. Every infinite set is not unbounded we consider the example 
1

x n N
n

the upper bound of this set is 1 and lower bound of this set is 0.

(ii) No. If we take set of integers I = {0, � 1, � 2,......}. For this set we consider the subset
x = {0, � 1, � 2,......} which is bounded because – 2 is the lower bound and + 2 is the
upper bound of this set x.

 8. Is there exist a bounded set which
(i) has supremum but not infimum?

(ii) has infimum but not supremum?

Sol. :
(i) Yes, there exist infinity many sets.

one is x = { x � R | 3 < x � 4}

The supremum of this set is 4 � x but infimum 3 � x.

(ii) Yes, there exist infinitely many set S.

One is x = { x � R | 3 � x < 4}

The infimum is 3 which is the element of x but supremum 4 is not belongs to this set.

9. Determine bound (if exist) of the following sets :

(i)
1

x n N
n
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(ii) x
n

 =    
–1

n
  n  N1 � �

R
S|
T|

U
V|
W|

b g

(iii) x =    
n

  n  N1
1

� �RST
UVW

(iv) x =    
n

  n  N1
1

– �RST
UVW

(v) Set of all negative integers.

Sol. :

(i)
1

x n N
n

1 � x is the upper bound of x because 1 � x � x � x . Any number which is less than 1 can
not be upper bound of x. So 1 is the supremum of x. Since � x � x, x � 0 so 0 is the lower

bound of x. Now we take an arbitrary vary small quantity m. Then � a n � N  s.t. 
1

n
  m� .

so m is not lower bound of x. Thus we can say that + ve real number greater than 0 cannot
be lower bound of x. Hence 0 is the infimum of x.

Sup (x) = 1 & Inf (x) = 0

(ii) x
n

 =    
–1

n
  n  N1 � �

R
S|
T|

U
V|
W|

b g

We write the set x in tabular from by putting n = 1, 2, 3,.....

x =   ,  
3

2
 ,  

2

3
 ,   ,  

4

5
0

5

4
,......

RST
UVW

=  0   
2

3
 ,  

4

5
  

2n

2n +  1
 ,  ......l q � RST
UVW,......,

   �
�RST
UVW 

3

2
 ,  

5

4
 ,  –  

2 1n

n
,.....

=  0   
2n

2n +  1
  n  N      n  Nl q � �RST

UVW �
�

�RST
UVW

2 1n

n
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= { 0 }�  Y  �  Z Where y =  
2n

2n +  1
  n  N�RST

UVW

z =     n  N
2 1n

n

�
�RST
UVW

Now, y =  
2n

2n +  1
  n  N�RST

UVW

= 1
1

2 1
 +     n  N

n �
�RST
UVW

� RST
UVW  +   ,   +   ,   +   ,......1

1

3
1

1

5
1

1

7

We see in this set as n increasing the element’s of x decreasing and tending to 1, 
1 4

1
3 3

is the largest element of this set Y.

For the set z =  
2n +1

2n
 n  N�RST

UVW

=   +  
1

2n
  n  N1 �RST

UVW

=   +  
1

2
 ,   +  

1

4
 ,   +  

1

6
 ,.......1 1 1

RST
UVW

elements of z are decreasing and tending to 1.

The largest element of this set is 1 +  
1

2
 =  

3

2

Since X = Y � Z � { 0 }

So supremum of x =  max 
3

2
 ,  

3

4
 =  3

2
F
HG
I
KJ

Infimum of x = 0
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(iii) x =    
n

  n  N1
1

� �RST
UVW  We can write the set x as

x =  1 +  
1

2
 =  2,  1 +  

1

2
 ,  1 +  

1

3
 ,  1 +  

1

4
 ,......

RST
UVW

As we are seeing that the elements of x are decreasing so the maximum number in this set
is 2. 2 is upper bound of x. No number x < 2 is not upper bound of x. So 2 is the supremum
of this set.

1 is the lower bound of x . If we choose an arbitrary real number s > 1 s.t. s is very - very

close to 1 then � a natural number n S.t. 1 +  
1

n
  � s . Thus s can not be lower bound of x.

So we can say that 1 is the greatest lower bound i.e.

infimum. Sup x = 2,   Inf x = 1

(iv) x =    
n

  n  N1
1

– �RST
UVW  We can write this set as

x =  1 – 1=  0,  1–  
1

2
 ,  1 –  

1

3
 ,  1 –  

1

4
 ,......

RST
UVW . from one sight the least element of this

set is 0. So 0 is the lower bound of x. Any number x > 0 cannot be lower bound of x. So 0
is the infimum from the set we see that 1 is the upper bound of this set. It we choose an

arbitrary real number s < 1 s.t. s is vary- vary close to 1 then �  n �N s.t. 1–  
1

n
  s�  thus

s cannot be upper bound of x. So 1 is supremum of x. Hence Sup x = 1 and Inf x = 0

(v) I– = Set of all negative integer. we write

I– = {– 1, – 2, – 3, ......}

I– is bounded above. – 1 � I– is an upper bound of I– . Now – 1 � I–. So any number less than
– 1 can not be upper bound of I– . Therefore –1 is the supremum of I– .

We cannot find any real number m s.t.

m � x �  x � I–. The set I– is not bounded below. So infimum for this set does not exist.

2.11.Completeness property for R :

Completeness for the set of numbers with respect to boundedness :
Any set P of numbers whose Every non-empty subsets which is bounded above has a
member of P for its supremum is complete.

e.g. The set of integer I is complete.
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Completeness Property For R :

Every bounded above non-empty set of real number has a supremum in R. It is also called
supremum property of R.

Note : (i) R is complete

(ii) R is ordered Field

(iii) Q is not complete.

2.12.Complete Ordered Field :

Let P is any ordered Field. P is called completed ordered Field if it is complete. In other
words we can say that P is complete if Every non-empty subset P

1
 of P which is bounded

above has member of P for its supremum.

EXAMPLE

1. R is complete ordered field.

Note : Q is not complete ordered field

Theorem 1:
Any non-empty bounded below subset of real numbers has an infimum.

Proof :

Consider a non-empty bounded below subset P of R.

W define a set

Q = { q | q = – p, p � P}

It is given that P is bounded below. So � lower bound p
1
 of P. So we can say that p

1
 � p �

p � P

Now, p
1
 � p � – p

1
 � – p ��� p1���q �  q � Q

� – p
1
 is upper bound of Q.

� Q is bounded above.

Thus Q has supremum say q
1
 (by completness property)

Now, q
1
 = Sup Q

� q � q
1 �  q � Q

� – p � q
1

� p � – q
1
 �  q � P

� – q
1
 is lower bound of P.

it t/ is lower bound of P then – t/ is an upper bound to Q and so

q
1
 �  – t/

� – Q
1
 � t/

Hence – q
1
 = inf P
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Theorem 2 :

The set of all rational numbers i.e. Q is not complete ordered field.

Proof :

Consider the set P = { p | p � Q+ & p2 < 2} P is non-empty because ½ � P . 2 is the upper
bound of P i.e. P is bounded above. Thus we can say that P is non- empty bounded above
subset of Q. We shall prove that there does not exist any rational number x which is
supremum of P.

When x � 0. In this case x can not be supremum of P because each clement of P is positive.

When x > 0 & 0 < x2 < 2

Consider y =  
4 +  3x

3 +  2x
(1)

�  – 2 =
x

 +  3
2

2

y
x

– 2

2
2b g         (2)

and y
x

 – x =  
2. 2 –  x

 +  3

2d i
b g2

        (3)

x �Q+  so from (1) y � Q+ . x2 < 2 then from (2) y2 < 2. From (3) we can say that y > x. Now
we have y � Q+ & y2 < 2 this implies y � P. Since y > x so x cannot be upper bound for P.

When x > 0 and x2 = 2. Since there does not exist any rational number whose square is 2.
So this case is not possible.

When x > 0 and x2 > 2

From (1)   y =  
4 +  3x

3 +  2x

x2 > 2 we can say from (1) , (2) & (3) y �Q+  s.t. y2 > 2 & y < x which implies 2 < y2 <x2.
We take y

1
 as arbitrary element of P.

Then,

0 < y
1

2 < 2 < y2 < x2 or 0 < y
1
 < y < x

�  x and y both are upper bound of P and x cannot be best upper bound of P because y
which is less than x is upper bound of P. Set Q of rational number does not satisfy order
completeness property.

Hence Q of rational number is not order complete.

Theorem 3 :

Natural number set N is not bounded above.
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Proof :

We consider N is bounded above. Since N is bounded above and N ��� so N must have
leas upper bound M ( By order completeness property).

So n � M  �  n � N

Since n + 1 is a natural number so

n + 1 � M �  n

� n �� M – 1 �  n

� M – 1 is upper bound of N.

Thus we have an upper bound M – 1 of N which is less than the supremum of N. This is
contradiction.

From above we can say that N is not bounded above.

2.13. Archimedean Property for real numbers :

Theorem 1 :
For x � R and y � R+ there exist a positive integer n s.t.

n y > x

Proof :
When x � 0 then theorem is obvious consider x > 0.

let we cannot find any n�I+ s.t. ny > x.

So �  n � N we have n y � x

� x is upper bound of the set

P = { n y / n�N}

Since P ��� and bounded above so

P must have least upper bound M (By completeness property)

So, n y � M �  n ��N

� (n + 1) y � M �  n ��N
� n y + y � M

� n y � M – y �  n ��N
� M – y is upper bound of P.

Thus we have M – y which is upper bound of P is less than supremum M. Which is not
possible so our assumption is wrong.

Thus � some n � I+ s.t. n y > x.

2.14. Archimedean ordered field :

Let F be any ordered field. if for all x, y � F and y > 0 � some n � I+ s.t. n y > x then F is
called Archimedean ordered field.
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EXAMPLE

Real number Field R is an Archimedean field.

Corollary :

1. If x � R then � a + ve integer n s.t. n > x.

2. If x � R+ then � a + ve integer n s.t. 
1

n
  x�

Proof 1:

If we take y =1 in Archimedean property then we get the corollary 1.

Proof 2 :
In Archimedean property we take y = x & x = 1. we get

n x > 1

1
x

n

Corollary :

3. Let q � R then � two integer P and r s.t. P < q < r

Proof :

Given q � R we consider q > 0.

Now 1 � R so by Archimedean property � r � N s.t. r. 1 > q or q < r.

We consider q < 0 and 1 � R then by Archimedean property � r � N s.t. r. 1 > q i.e. q > r
Now we can say that in Every case by Archimedean property we can find r � N s.t.

q < r ...(1)

When q < 0 then – q is positive so ( a + ve integer m s.t. – q < m or – m < q

take P = – m

We have P < q ...(2)

Now we have

P < q < r from (1) & (2)

Example :

For Every positive real number x we can find a unique natural number n s.t.

n n –  1
  x  

n n +  1b g b g
2 2

� �
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Sol. :

Consider a real number 2

1

2
x +  

1

4
 

1

2
F
HG

I
KJ �

We can find a unique natural number n s.t.

n   +  
1

4
 
1

2
  n +  1� FHG

I
KJ � �2

1

2
x

or n –  
1

2
   +  

1

4
 n +  

1

2
F
HG

I
KJ �
F
HG

I
KJ �2

1

2
x

2 2
1 1 1

or 2
2 4 2

n x n

or, n  
1

4
 –  n  2x +  

1

4
  n  +  

1

4
 +  n2 2� � �

2 2or, n - n 2 x n + n

or, n n –  1
  x  

n n +  1b g b g
2 2

� �

2.15. Dedekind’s Property For Real Numbers :

R be set of all real number and A & B are two non-empty set s.t. A � B = R and Every
element of A is less than element of B then we can find P � R s.t. q < P � q � A   and r
> P � r � B

For Example :

We take A = R–

and B = R+ � { 0 }

A and B are non-empty and A � B = R. Also we have Every element of A is less than B
then � 0 � R s.t. q < 0 � q � A and r > 0 � r � B.

Theorem 1
The order completeness implies and is implies by Dedekind’s property.

Proof :
We consider two non-empty set A and B s.t. A � B = R. and each members of A is less
than each member of B.
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We prove that

Order completeness � Dedekind’s property.

i.e. we can find real number p s.t. q < p

� q � A and r > p � r � B

Since A and B are non-empty so we can take r � B. Since each member A is less than each
member B so q < r �  q � AA

� r is upper bound for A

� A has supremum in R [�By completeness property of R]

Consider Supremeum A = p

take r > p

We can say r � A

Since r � A  then r � B  [� A  � B = R]

Thus we have r > p ��r � B

further consider q > p. So � s � A s.t. q < s

[ because Sup A = p � q is not upper bound for A]

� each member of A is less than each member of B so we have r s � A and q > s this
implies q � B or q � A.

Therefore we can find p � R s.t. q < p � q ��A and r > p � r ��B.

Thus we can say that completeness implies Dedekind property. Consider a non-empty
bounded above subset x of R. Take k

1
 as upper bound of x.

Since k
1
 is upper bound of x � p � k

1
 �  p � x

Consider B is the set of all upper bound of x. So B contains k
1
. We can say B is non-

empty. If A = R – B then x  A and A is non-empty. A  � B = R. Consider q � A and r �
B. Then q and r distinct. Now it q > r then r � B implies q � B � A � B is non- empty
which is not possible so we have q < r. By Dedekind’s property we can find p � R s.t. q
< p � q � A and r > p � r � B. When r > p then r is not belongs to A. So r is not the
element of x [� x  A]. Thus the real no.

r > p is not belongs to x. Thus q � p �  q � x i.e. p is upper bound for x.

Now consider q
1
 < p.

q
1
 < p � q

1
 � A � q

1
 � B

So x is not bounded above by q
1
. Now we have any real number q

1
 < p is not upper bound

of x and p is upper bound for x. So p is supremum of x.

Thus Dedekind property implies completeness property.
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2.16. Representation of Real numbers on a line :

We take a straight line. Consider point o on it. It divide the straight line in two parts. One
is right from 0 and second is left from 0. Right part is positive and left part is negative.
We take another point P on the positive part. o represents 0 and P represent’s 1. OP is 1
unit. Each point on the line can be associated with exactly one real number. The point’s in
the positive part of line represents the positive real number i.e. positive real numbers are
presents in the right hand side of o. Negative real numbers are presented in the left side of
o. This line is called real line R.

2.17. Dedekind Cantor axioms :

Corresponding to Every real number there is unique point on the directed line and
conversely corresponding to unique point on the directed line there is a unique real number.

Note : There is one to one correspondence between the real numbers and the points on directed
line.

2.18. Denseness Property :

Theorem 2
Between two different real numbers there always lies a rational number and so infinity
may rational numbers.

Proof :

P and r any two real number s.t. p < r then r – p > 0. According to Archimedean property
there exist a integer n�1+ s.t. n(r – p) > 1 or n r – n p > 1 or n r > 1 + n p.

We can also find unique m � I s.t. m > n p � m – 1 so that n p + 1  m > n p.

From above we have

n r > n p + 1 � m > n p

m
r > p

n

Here  
m

n
  Q�

or p < q < r  where q
m

n
 =   

Thus between two real number P and r � a rational number q. continuing above procedure

for P and q & q and r we get rational number q
1
 and q

2
 s.t.

p < q
1
 < q & q < q

2
 < r

� p < q
1
 < q < q

2
 < r
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Continuing in this way we get infinitely many rational numbers between two distance

real numbers.

Theorem 3

Between two different real numbers there always lies an irrational number and so infinitely
many irrational numbers.

Proof :

P and r two real number s.t. r > p so r – p > 0. According to Archimedean property � a +
ve integer n s.t.

n (r – p) > x where x is positive irrational number.

r –  p  
x

n
  r  p +  

x

n
� � �

Since p +  
x

n
   p +  

x

2n
  P� �

So, r  p +  
x

n
   p +  

x

2n
  P� � �

Now, P +  
x

n
 –  P +  

x

2n
 =  

x

2n
F
HG

I
KJ
F
HG

I
KJ  is irrational so at least

 one of P +  
x

n
 and P +  

x

2n
 is irrational number. Take this irrational number q (say).

Thus we have r > q > p or p < q < r. Continuing above procedure for p and q & q and r we
have irrational number q

1
 and q

2
 between p and q & q and r s.t. p < q

1
 < q < q

2
 < r.

Continuing in this way we get infinity many irrational numbers between two distinct real
number p and r.
Theorem 4
There always lie infinite real number between two distinct real numbers.

Proof :
The proof of this theorem is follows from one of the theorem 1 and 2.

Exercise 1(A)

1. Prove that 5  is not rational number ?

2. Show that if x � ] a, b [ then x
a b

–
�

�
2

  
a –  b

2
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3. Show that |x + y + z| � |x| + |y| + |z| �  x, y, z � R?

4. Prove that |x – y| = |y – x|

5. Prove that there does not exist any rational number whose squall is 3?

6. If x, y � (a, b) then prove that |x – y| < b – a ?

7. If x � R then prove that x  =  x2 ?

8. Show that max{x, y} = ½ (x + y + |x – y|) and min {x , y} = ½ {x + y – |x – y|} � x, y R

9. Show that the set x = {x | x = 2n, n � N} is bounded below ?

10. Find the supremum and infimum of the following sets :

(i) x = {x � I | x2 � 4a}

(ii) x = {o, 1, 2, 3, 4, 5, 6}

(iii) (3, 4)

(iv) x = {x | x = 2n, n � N}

(v) x =  
3n +  2

2n +  1
  n  N �

RST
UVW

(vi) x =  
1

5n
  n  I –  0  �

RST
UVWl q

(vii) x =  
1

n
 –  

1

m
 n  m  N , �

RST
UVW

(viii) x =   +  1,   +  
1

2
 ,   +  

1

3
 ,  .......� � �RST
UVW

(ix) x m=   +  
1

n
  m ,  n  N�

RST
UVW

11. Show that if x = {x ��R | x = n + 3, n � N}, x is unbounded?

12. Show that set R of all real numbers is unbounded?

13. Show that for the set x =    +  
1

2
 ,   +  

1

4
 ,   +  

1

8
  .......� � �RST
UVWThe infimum is 

1
π+

2

14. Find supremum and infimum if they exist :
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(i) x x x
n

=    Q   =  –1  –  
4

m
 ,  n  N� F

HG
I
KJ �

R
S|
T|

U
V|
W|

b g 1

4

(ii) x x x
n

n

=    Q   =  
–1

 ,  n  N� �
RS|T|

UV|W|
b g

(iii) ] 1, 2 � [ 3, 8[

(iv) x x x
n

=    Q   =  –1
1

n
 –  

4

n
 ,  n  N� F

HG
I
KJ �

R
S|
T|

U
V|
W|

b g

(v) x
n

=   –   sin 
n

2
  n  N1

1F
HG
I
KJ �

RST
UVW

�

15. Give an example of a set which is ordered field but not complete?

16. Show that x = 0 if 0  x  
1

n
  n  N� � � � ?

17. Show that x = 0 if 0 � x < �� � ��> 0 ?

18. Show that set Q of all rational numbers is an Archimedean ordered field?

19. If x is positive real number, then there exist a unique natural number n s.t.

n n –  1  2n – 1
  x  

n n +  1  2n + 1b g b g b g b g
6 6

� �

ANSWERS EXERCISE 1(A)

10. (i) Sup x = 7, infx = – 7

(ii) Sup = 6,    Inf = 0

(ii) Inf = 3,     Sup = 4

(iv) Not bounded above, Inf = 2

(v) Inf �  
3

2
 , Sup = �  

5

3

(vi) Inf �  –  
1

5
, Sup = �  

1

5

(vii) Inf = – 1,    Sup = 1
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(viii)Sup = � + 1,   Inf = �
(ix) Inf = 1,  Sup does not exist.

14. (i) Inf �  –  
7

4
 ,    Sup = 3

(ii) Inf = – 1 ,     Sup = ½

(iii) Inf = 1,      Sup = 8

(iv) Inf �  –  
3

2
,    Sup = 3

(v) Inf = – 1,    Sup = 3

2.19. Neighborhood of a point :
Let R be a set of all real numbers. S is any non-empty subset of R. ‘a’ is any real number.
Then S is said to be Neighborhood of a if � � > 0 s.t.

a � (a – �, a + �) � S.

Or we say that � an open interval I which contains a and is also contained in S.

Note : We use Nhd. In place of Neighborhood.

2.20.Deleted Neighborhood :

Let a � R and S is Nhd. of a then the set S – {a} is called deleted Nhd. of a.

EXAMPLE

1. Find the Nhd. of 5 in the following sets :

(i) ] 2, 6 [ (ii) [2 , 6 [

(iii) [2 , 6 ] (iv) ] 5 , 7 ]

(v) ] 5 , 7 [

Sol. :

(i) Since � open interval ] 3 , 6 [ � ] 2 , 6 [ and 5 � ] 3 , 6 [ so ] 2, 6 [ is a Nhd. of 5.

(ii) Since 5 � ] 2, 6 [ � [ 2, 6 [ so [2 , 6 [ is a Nhd. of 5.

(iii) Since 5 � ] 2, 6 [ � [ 2, 6 ] so [ 2, 6 ] is a Nhd. of 5.

(iv) Since 5 � ] 5 , 7 ] so it is not Nhd. of 5.

(v) Since  5 � ] 5 , 7 [ so ] 5 , 7 [ is not a Nhd. of 5.
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2. Show that Every open interval is a Nhd. of each of its points.

Sol. :
] p, q [ any open interval and r is any arbitrary point of ] p, q [ i.e. p < r < q. We consider
� M the minimum of r – p and q – r then r � ( r – �, r + �) � ] p, q [. Thus we can say that
] p , q [ is a Nhd. of r. Hence Every open interval is a Nhd. of each of its points.

3. Every loosed interval [p, q ] is a Nhd. of each of its points except initial point P and
final point q.

Consider open interval (p, q) and r is an arbitrary point of (p, q) then we have already
Prove that Every open interval is a Nhd. of each of its points. So (p, q) is a Nhd. of r. we
have (p, q) � [ p, q ]. We can write r � (p, q) � [ p , q ] so [ p, q ] is Nhd. of r or [ p, q ] is
a Nhd. of Every element of  (p, q). Now for � > 0 we have p � (p – � , p + �) but ( p – �,
p + �) � [ p – q ]

Thus � > 0 s.t. (p – �, p + �) � [ p , q ] So [ p , q ] is not Nhd. of P. Similarly � > 0 s.t.
q ��( q – � , q + �) � [ p, q ] so [ p, q] is not Nhd. of q.

Hence Every closed interval is Nhd. of each of its points except starting and final point.

4. Show that set Q of all rational numbers is not Nhd. of any rational number.

Sol. :

Let r � Q is any arbitrary rational number if take any � > 0 than we can not find the open
interval (r – �, r + �) s.t. (r – �, r + �) � Q because in (r – �, r + �) there are infinitely
irrational numbers (Denseness property) Hence Q is not Nhd. of any rational number.

5. Prove that if x is any non- empty finite then it is not Nhd. of each of its points ?

Sol. :

It is given that x is any non-empty finite set. Let x � x is any arbitrary point of x. Then for
any � > 0 we can not find the open interval I = (x – �, x + �) s.t. I ��x. because I contains
infinite points distinct from the points of x. Thus Every I = (x – �, x + �) � x. Hence x is
not Nhd. of each of its point.

6. Prove that the set R of all real numbers is a Nhd. of each of its points?

Sol. :

Let r � R is any arbitrary real number. Then for any� > 0 we have r � ( r – �, r + �) and
(r – �, r + �) �� R i.e. r � (r – �, r + �) �� R.

So, R is Nhd. of each of its points.

7. Show that I+ set i.e. set of all positive integer is not Nhd. of any positive integer ?

Sol. :

Given I+ is a set of all positive integer r � I+ any arbitrary positive integer. For any � > 0
we can not find the open interval  (r – �, r + �) s.t. (r – �, r + �) � I+ because in (r – �,
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r + �) there are infinite real numbers which are not positive integers. So I+ is not Nhd. of
any positive integer.

Some theorems on Neighborhood :

Theorem 1:
a � S if S is a Nhd. of a � R.

Proof :

Given  a � R any real number and S is Nhd. of a than � � > 0 s.t.

a � ( a – �, a + �) � S

� a � S

Theorem 2:

Every a � R has at least one Nhd.

Proof :
Take a � R any arbitrary. Then for any � > 0

We have a � (a – � , a + � ) � R

R is always Nhd. of a.

Hence Every a � R has at least one Nhd.

Theorem 3:

If for any point P , N
1
 and N

2
 are two Nhds. then N

1
 � N

2
 is also Nhd. of P.

Proof :

Since N
1
 is Nhd. of P so ���� > 0 s.t.

(P – �� , P + �� ) � N
1

Similarly N
2
 is Nhd. of P so ���� > 0 s.t.

(P – �� , P + �� ) � N
2

Now take � = min (���, ��)

Then (P – � , P + � ) � (P – �� , P + �� ) � N
1

and (P – � , P + � ) ��(P – �� , P + �� ) � N
2

So, (P – � , P + � ) ��N
1 
� N

2

Hence N
1 
� N

2 
 is Nhd. of P.

Theorem 4:

If X is a superset of any Nhd. N of point a then x is also Nhd. of a.

Proof :

Since N is Nhd. of a so ��� > 0 s.t.
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a � ( a – �, a + �) � N

Since, X ��N so we have

a � ( a – �, a + �) � N � x

� a � ( a – �, a + �) � X

Hence x is Nhd. of a.

Theorem 5:

The necessary and sufficient condition for a non-empty subset S of R. is a Nhd. of P�R is
that ��n � > I+ s.t.

P –  
1

n
 ,  P +  

1

n
  S

F
HG

I
KJ �

Proof :
Necessary Part

It is given that S is non-empty subset of R and Nhd. of P�R.

We have to Prove �� n � I+ s.t. P –  
1

n
 ,  P +  

1

n
  S

F
HG

I
KJ �

Since S is Nhd. of P so ��� > 0 s.t.

p � ( p – �, p + �) � S

For � > 0 we can take n � > I+ s.t. 
1

n

1

n
    P +  

1

n
  P +  � � � � � ...(1)

and 
1

n
    –  

1

n
  –� � � � �

� � �p    p –  
1

n
 – ...(2)

From (1) & (2)

p –  
1

n
 ,  p +  

1

n
   p –   ,  p +  

F
HG

I
KJ � � �b g
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Thus ��n � > I+ s.t. p –  
1

n
 ,  p +  

1

n
   S

F
HG

I
KJ �

Sufficient Part :

Given ��n � > I+ s.t.

p –  
1

n
 ,  p +  

1

n
   S

F
HG

I
KJ �

to prove S to Nhd. of P

Since p –  
1

n
 ,  p +  

1

n
 

F
HG

I
KJ  is such open interval which contains P and is contained in S

therefore S is Nhd. of P.

2.21. Adherent Point :

Let a � R be any point. Then a is called the adherent point of set x  R if Every Nhd. of
P contains a point x. We denote the set of all a adherent points of x as Adh x and read as
adherence of A.

By definition of Adherent point we can say x  Adh x.

2.22. Limit Point (or accumulation point or cluster point or condensation point) :

Let a � R be any real number. Then a is said to be limit point of x  R if Every Nhd. of
a has a point of x distinct From a.

Or we can say that a is said to be limit point of x R if and only if �  Nhd. s of a,
(s � x) – {a} ���

Or �  Nhd. s of a, (s – {a}) � x ���

Or �  � > 0 (] a � ( a – �, a + ���� x) - {a} =��
Note :

1. It is clear from definition that Every limit point of x is adherent point of x. Converse is
not.

For Example :

We consider the set x =  
1

n
 n  N�RST

UVW  1 is the adherent point but it is not the limit point.

2. It is not necessary that the limit point belongs to x.

3. The set of all limit points is called the Derived set. If we take the derived set of x then we
write D (x).

4. The points x � X which are not limit point of x are called the isolated point.
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5. Each point of set x is either limit point or isolated point.

Theorem 1 :
For any subsets x and y of R

(i) D (�) = �

(ii) If X � Y then D ( X ) � D  (Y)

(iii) D( X � Y) � D (X) � D (Y)

(iv) D (X �Y) = D (x) � D (Y)

(i) For P � R , R is Nhd. of P and R ������� So we can say.

x � limit point of � any real number is not limit point of � . Hence D (�) = �

(ii) To Prove It X � Y then D (x) � D (Y) take P as a limit point of X i.e. P � D (X). So this
implies Every Nhd. N of P contains a point of X distinct from P. Since X � Y so Every
Nhd. N of P contains a point of Y distinct from a this implies a � D (Y). Thus we have X
� Y � D(X) � D(Y)

(iii) To Prove if D( X � Y) � D (X) � D (Y) Since X � Y � X and Y

Then from (ii) D( X � Y) � D (X) and  D (Y)

Thus we have D( X � Y) � D (X) � D (Y)

(iv) W have to prove D (X �Y) = D (x) � D (Y)

For this we shall show

D (X �Y) ��D (x) � D (Y)

and then D (X) � D(Y) ��D (x � Y)

Since X , Y � X � Y So By (ii) We have

D(x), D(Y) � D(X � Y) or D(x) ��D (y) � D(X ��Y) ...(1)

Let P be a limit point of X � Y. Consider P is not belongs to D(X) � D(Y). Therefore P is
not belongs to D(X) and is not belongs to D(Y) i.e. P is not limit point of X and not of Y
or we can say that we can find a Nhd. N

1
 of P which contains no point of X distinct from

P and a Nhd. N
2
 of P which contains no point of Y distinct from P. This mean N

1
 � N

2

Nhd. of P has not any point of X and Y distinct from P i.e. N
1
 � N

2 
does not have any

point of X �Y distinct from P i.e. P � D(X � Y).So we have P � D (x) �D (y) 

P � D(X � Y) Thus

D (X �Y) ��D (x) � D (Y) ...(2)

From (1) & (2) we have.

D (X �Y) = D (x) � D (Y)
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EXAMPLE

1. Show that D(R) = R ?

Sol. :

Let a � R be any arbitrary real number. Then ( a – �, a + �) has infinite real number so we

can say that ������the open interval a - ,a +  has atleast one real number distinct

from a. Thus all real numbers are limit point of R. Hence D(R) = R.

2. Show that D (R – Q) = R

Sol. :

Consider a � R be any arbitrary real number. Then � ��> 0 the interval ( a – �, a + �)
Contains infinity many irrational numbers. (Denseness property) Distinct from a since a
is arbitrary so we have D(R – Q) = R

3. Find D(x) where X =  
1

m
  

1

n
  m,  n  N� �

RST
UVW

?

Sol. :

We have X =  
1

m
  

1

n
  m,  n  N� �

RST
UVW

 first take m fix and n vary..

Then as n ���� then 
1

m
  

1

n
  

1

m
� �  (m is fixed). Thus X has limit point 

1

m
.

As m ��N so the all points of the set  
1

m
  m  N�

RST
UVW  are limit points of X.

Now we take m & n both vary. as m ����and n ����then 
1

m
 +  

1

n
  � �  .

Thus we can say that 0 is the limit point of x.

Thus we have D X  =   
1

m
  m  N   0b g l q�

RST
UVW � ...(1)

We have n fixed and m vary. As m ����then 
1

m
 +  

1

n
  � �

Thus 
1

n
 is the limit point of x i.e. all the point of  

1

n
  n  N�

RST
UVW
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are limit point of X. Thus D X  =   
1

n
  n  N   0b g l q�

RST
UVW � ...(2)

both (1) & (2) are same.

Now D2 (x) = {0}

and D3 (x) = �
Thus we can say that X is first species and of second order.

4. Find the limit point of the set X =   P +  
1

n
  n  N  �

RST
UVW ?

Sol. :

Consider x � R be any real number. Then by Trichotomy law exactly one of the following
is true.

p < x , p = x, p > x

If p < x then we can find M � I+ s.t.

1
M < M+1

x- p

� � � 
1

M
  x –  p  

1

M +  1

� � � �P +  
1

M
  x  p  

1

M +  1

Thus the Nhd. P +  
1

M +  1
   p  

1

M
, �F

HG
I
KJ  of x contains no point of x distinct from x. So

x > p can not be limit point of P.

If p = x then we can find a + ve integer M � I+ s.t. � � � �  
1

n
  n  M Thus all Nhd.

( p – � , p + �) has infinitely many points of x because 
1

p+
n

( p – � , p + �) �  n � m.

If p > x then we have 
1

x-1 < p < p+ n
n

. Thus the Nhd. (x – 1, p) has no point of x.

Thus we can say that x < p can not be limit point of x.

Hence x has one limit point which is p.
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5. Find D (Q) ?

Sol. :

Let a � R. The �  ��> 0, the open interval (a – � , a + �) contains infinity many rational
numbers (Denseness property). Thus the interval (a – � , a + �) contains infinitely points
of Q distinct from a. So a be limit point of Q. It a is arbitrary then Every real number is
limit point of Q. Hence D(Q) = R.

6. Show that D(I) = , where I is the set of all integers?

Sol. :

Let a � I be any integer. We consider �� > 0 s.t. � =  
1

2
. Then the interval

a –  
1

2
 ,  a +  

1

2
F
HG

I
KJ  contains no integer distinct from a thus we can say that any a � I is

not limit point of I.

If a  I. Then we can find integer p s.t. p < a < p + 1. So the interval (p, p + 1) which is
Nhd. of a does not contain any integer distinct from a. Thus a is not limit point of I. Hence
D(I) = �.

7. Show that D (0 , 1) = [0, 1]
Sol. : Let a � [ 0, 1] be any arbitrary number in [0, 1] . Then the interval (a – � , a + �) contains

infinitely many points of ]0, 1[ distinct from a. Thus a is limit point of (0, 1)

If a � [0 , 1]. Then we consider � > 0 s.t.

� < |a – 0| and � < |a – 1|. The interval (a – � , a + �) has no point of (0, 1). So a is not
limit point of (0, 1)

Thus from above we can say that D (0, 1) = [0, 1]

Bolzano- Weierstrass Theorem 1 :

If X is infinite bounded set of real numbers then x has a limit point.

Proof :

It is given x is infinite bounded set of real numbers. Let m and M are bound of x. Let we

define a new set S s.t.

S = {x � R | number of elements which are belongs to X and less than x is finite}

From S we can say that m belong to S. Therefore S ���. M is upper bound of S. Since S is

non-empty and bounded above then by order completeness property S has supremum.

Suppose M
1
 is supremum of S and (M

1
 – �, M

1
 + �) is Nhd. of M

1
. Now we have M

1
 is

supremum of S. So we can find at least one point x of S s.t. M
1
 – � < x. x � S so at most

finite number of points of X less than x and M
1
 – � exceed finite number element of X
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almost. M
1
 + � � S since M

1
 is supremum of S. So there are infinitely many points of x

less than M
1
 + � from above we can say that the Nhd. (M

1
 – �, M

1
 + �) has infinitely

many elements of x. Hence M
1
 is the limit point of X.

1. Show that the set 
1

X 2 n N
n  has a limit point?

Sol. :

The set 
1

X 2 n N
n  has infinitely many points. It has 3 and 0 as upper and lower

bound respectively. So x is bounded set. Thus x is infinitely bounded set of real numbers.
Hence by Bolzano-weierstrass theorem x has a limit point.

2. Prove that set 
1

X n N
n  has a limit point ?

Sol. :

Since 
1

X n N
n  is infinitely bounded set (lower bound 0 and upper bound 1). So

by Bolzano-Weierstrass theorem it has a limit point.

2.23.Countable set :

Any set X is said to be countable set if it is either finite or denumerable. A set X is said to

be denumerable (or countable infinite) if � a mapping f : N � x which is 1 – 1 and onto.

The set which neither finite nor denumerable is called uncountable set.

1. We consider the set 
1 2 3

X , , ,.......
2 3 4 . There exist a mapping between X and N

which is 1 – 1 and onto i.e.

f : N � X  s.t.

f n  =  
n

n +  1
    n  Nb g � �

2. The set x = { 2, 4, 6,.....} is countable because  1 – 1 onto map f : N  x  s.t. f(x) = 2n

3. The set x = { 1, 3, 5, .....} is countable because it is denumerable i.e.  1 – 1 onto map
f : N  x  s.t. f(x) = 2n –1.

4. Show that set I of all integers is countable ?
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Sol. :

We consider a mapping

f : N � I s.t.

f n  =  

n – 1

2
      ,     When n is odd

– n

2
         ,     When n is even

b g
R
S
||

T
||

Now we shall show f is 1 – 1 and onto.

f (1) = 0

f (2) = – 1

f (3) = 1

f (4) = – 2

f (5) = 2

f (6) = – 3

It is easily seen that different element of N have different image in I. So f is 1 –1.

Now let m ��I+ � {0} � 2 m ��I+ � {0} � 2m + 1 ��I+

i.e. 2m + 1 is a rational odd number so

f 2m +1  =  
2m +  1  – 1

2
 =  mb g b g

Thus m has the preimage 2m + 1 in N. We let m ��I– . m ��I– � –2m ��I+  i.e – 2m is even

Natural number or even positive integer. f –2m  =  
–2m

2
 =  mb g b g–

m has preimage –2m.

Thus each element of I has preimage in N. So f is onto. Hence set of all integers is
countable

2.24.Some theorem on countability :

Theorem 1:
Let x be any countable set then Every subset of X is countable.

Proof :

We consider y  X.

If y is finite then it is countable. Now let X is denumerable set and y is infinite. Since X
is denumerable set so X can be written as <x

1
, x

2
,...... x

n
.....> infinite sequence. We take n

1
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is the smallest natural number s.t. 
1nx � y and further we take n

2
 is smallest natural

number s.t.

n
2
 > n

1
 and so on. Thus we have

y = {
1nx , 

2nx , 
3nx  ......}. Clearly the function f : N � y defined by f(r) = 

rnx
 
is bijective.

Hence y is denumerable i.e. countable.

Theorem 2:

If X is uncountable set then Every superset of X is uncountable.

Proof :

Let y �x. If y is countable then theorem 1 says x is also countable which is not possible
because x is uncountable. Hence Every superset of uncountable set is uncountable.

Theorem 3:

If x and y are countable sets then x � y is also countable.

Proof :

Given x, y and two countable set. To prove x � y is also countable. Let the elements of x
and y is arranged in definite order. So take x = {a

1
 , a

2
......}

y = {b
1
 , b

2
 .....}

Take x & y have no common elements. Then x � y = {C
1
, C

2
,...}

Here C
2n

 = b
n
 & C

2n –1
 = a

n
,  n � N

Thus each element of x � y has definite place in the above arrangement. So x � y is
countable.

Note 1: If x
1
, x

2
.....,x

n
 are finite number of countable sets then 

n

i
t=1

x  is also countable.

Note 1: The union of countable family of countable sets is also countable.

Note 1: Intersection of two countable sets is countable set.

EXAMPLE

5. Show that set Q of all rational numbers is countable?
Sol. :

We can write Q =   x
n  N

n�
�

Where x  =  
0

n
 ,  

1

n
 ,  –  

1

n
 ,  

2

n
 ,  

–2

n
,.....n

RST
UVW

Now, We take the function
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f : N � x
n
 defined by

f k  =  

–k

2n
      ,      k is even

k – 1

2n
   ,     k is odd

b g
R
S
||

T
||

f is bijective function i.e. f is 1 – 1 onto. So we can say that x
n 
is countable. Now Q is the

�
�n  N

n x . We know that the union of countable collection of countable sets is also countable

so s is also countable.

So Q in countable set.

Note : Set Q+
 
is countable.

6. Show that the set R of all real numbers is uncountable ?
Sol. :

We have to prove set R of all real numbers is not countable. If possible let it is countable.
We know that Every subset of countable set is countable. If we take a subset of R which
is not countable then our assumption is wrong i.e. we have already assumed that R is
countable which is wrong by showing a subset of R which is not countable. For this we
take the set closed interval [0, 1]. If possible we take [0,1] is countable. Since [0,1] is
countable then it is finite or  denumerable.[0,1] is not finite so it is denumerable. This
implies there is enumeration �

1
, �

2
 ..... of elements of closed interval [0,1]

We write

�
1 
= 0 . �

11
 �

12
 �

13
......�

1n

�
2 
= 0 . �

21
 �

22
 �

23
......�

2n

....................................

....................................

....................................

�
n 
= 0 . �

n1
 �

n2
 �

n3
......�

nn

Where all �
ij
 are belong to the set {n �  I | 0 �� n � 9}

Now we take a no. r, s.t; r can be expressed in decimal representation as  = 0 �
1 
�

2
....�

n...

Here for all i = 1, 2,......., n, .........,  �
i 
��{ 1, 2, 3, 4, 5, 6, 7, 8} and �

i 
� �

ij
 . Obviously � is

the element of [0,1] and �
 
���

n � n Now we can say  is not involved in enumeration.
Thus we get contradiction. Therefore [0,1] is not countable. Now we have show that a
subset [0,1] of R is not countable. Thus our assumption is wrong i.e. R is countable is
wrong. Hence R is uncountable.

7. Show that the set of all irrational numbers is uncountable?
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Sol. :

R be the set of all real numbers and Q set of all rational numbers. We consider set of all
irrational numbers is countable.

Now R = (R – Q) � R  � R is countable.

[� R is union of two countable set] Which is contradiction. So R – Q i.e. set of all
irrational numbers is uncountable.

Exercise 1(B)

1. Give an example of the following sets :

(i) A set which is Nhd. of any of its points?

(ii) A set which is Nhd. of each of its points?

2. Show that ]0,1[ is Nhd. of ½ ?

3. Is the set x = ]2, 3[ �]5, 6[ is Nhd. of 
5

2
? Justify your answers?

4. Prove that the close interval [5, 7] is Nhd. of 6 but not 5 and 7?

5. Let I n =  – 
1

n
 ,  1 +  

1

n
  n  N

F
HG

I
KJ � � . Determine n1

I
n

 and is it Nhd. of each of its points?

6. Determine the limit points of the set x =  
n

n + 1
  n  N�

RST
UVW  ?

7. Determine all the limit point of set x =  
1

n
  n  N�
RST

UVW
8. Find the limit points of the following sets :

(i) x =  6 +  
1

n
  n  N�

RST
UVW

(ii) x =  
3n +  2

2n +  1
  n  N�

RST
UVW

9. Give an example of the following sets :

(i) A set with only 0 limit point.

(ii) A set whose derived set is empty.

(iii) A set whose each points is limit points.
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(iv) A set which is unbounded and having limit points.
(v) A set which is bounded having no limit points.

10. Find the derived set of the following sets :
(i) [1, 2] (ii) (1, 2)
(iii) [1, 2 [ (iv) ] 1, 2]

(v) � (vi) x x =  x 2 Q�o t

(vii) x
n

n
n

 =
1 +  

  N
–1b g

�
R
S|
T|

U
V|
W|

(viii)x = {1 + 3–n | n � N} (ix) x n =   –
4

n
  N1 �

RST
UVW

11. Define countable set with an example ?
12. Show that [0, 1] is not countable ?
13. Show that the set N × N is countable ?

14. Show that if x and y are two countable set then x � y is also countable ?

15. Show that the set Q+ of positive rational numbers is countable ?

ANSWERS EXERCISE 1(B)
1. (i) R – Q (ii) R
5. [0 , 1] ,  No 6. 1
7. 0

8. (i) 6 (ii)
3

2

9. (i) x  
1

n
 n  N� �RST

UVW (ii) N

(iii) R (iv) R
(v) Any finite set.

10. (i) [1, 2] (ii) [1, 2] (iii) [1, 2]

(iv) [1, 2] (v) � (vi) R

(vii) {0} (viii){1} (ix) {1}

***
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Chapter 3

INFINITE SERIES

3.1. Infinite Series :
We consider the Sequence < un> of real numbers then the expression of the form
u1 + u2 + .......+ un + .......

is said to be an infinite series. We usually denote it by nu  or n
1

u
n

, un  denote the nth

term of the series.
3.2. Series of positive terms :

If on infinite Series. n 1 2 nu = u + u +.......+ u  has all terms positive i.e. if un > 0 �  n

then the series un�  is called series of positive terms.

3.3. Partial Sun :

Let un�  is an infinite series where terms may be positive or negative then, Sn = u1 +

.......+un is called nth  partial Sum. If un� , S1 = u1, u1 first partial Sum, and S2 = u1 + u2 =

Second partial Sum.....
3.4. Nature of an Infinite Series :

An Infinite series un�  is (i) Convergence (or we can say convergent) it sequence <Sn>

of  its partial Sum converges i.e.

If  lim S  =  finite
n

n
��

(ii) Diverge (or we can say divergent) if sequence <Sn> of its partial Sum diverges i.e. if

lim S  =  +   or –  
n

n
��

� �

(iii) (a) Oscillates finitely if <Sn> of its partial Sum Oscillates finitely i.e. If <Sn> is bounded
and neither converges nor diverges.

(b) Oscillates infinitely if <Sn> of its partial Sum oscillates infinitely i.e. if <Sn> is
unbounded and neither converges nor diverges.
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EXAMPLE

1. The Geometric series 1 + x + x2 + ��is
(i) Convergent if –1 < x < 1

(ii) Divergent if x � 1

(iii) Oscillates Finitely if x = –1

(iv) Oscillates infinitely if x < –1

Proof :

(i) When – 1 < x < 1 i.e. x � ] – 1, 1 [

S
n
 = 1 + x + x2 + .......+ terms = 

1 1

1

.  –  x

 –  x

nd i

n1 x
= -

1- x 1- x

n

n

1 x
limS lim = -

1- x 1- xn x

1
= Definite finite no. x < 1

1- x

So,   xn � 0 as n � �
� < S

n 
> is convergent. So given series is convergent.

(ii) When n � 1 : �

When n = 1,

Then S
n
 = 1 + 1 + 1 + ...... n terms = n

lim S  lim n  =  n
x

� �
��

So, < S
n
> divergent. When x > 1

S
n
 = 1 + x + x2 ...... n terms

= 1
1

1
  

xn

�
–

–x

lim
–

– –
 S  lim 

x
 =  lim 

x
 –  

1

x – 1n

n n

�
L
NM

O
QP

1

1 1x x
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< S
n
> is divergent. So given Series is divergent for n > 1

Hence given Geometric series is divergent for x  1

(iii) x = –1

S
n
 = 1 –1 + 1 – 1 + ...... n + terms

When n = even, S
n
 = 0

n = odd , S
n
 = 1

So, < S
n
> is bounded and neither converge nor diverges.

< S
n
> is oscillates finitely. So given series is oscillates finitely.

(iv) When x < – 1

if x < – 1 , then – x > 1

So, r = – x > 1

rn � �   as n � �

S
n
 = 1 + x + x2 + ...... n + terms

�
F
HG

I
KJ

 
1 –  x

1 –  x
 =  

1 –  – r

1 +  r

n nb g

�
�

 
1 –  r

1 r

n

 if n is even or 
1

1

 +  r

 +  r

n

 if n is odd.

lim S
n
 = � , – � according as n is odd and even.

<S
n
> is oscillates infinitely. So given Series oscillates infinitely.

2. Test the convergence or otherwise of the series 1 + 2 + 3....

Sol. :

S
n

= 1 + 2 + 3 + ....... n terms

= Sum of first n natural nos

= 
n n +  1

2

b g

lim  S  =  lim
n n +  1

2
 =  n

b g
�

Since < S
n
> is diverges to � , So given series is divergent.
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3. Prove the series 12 + 22 + 32 + ..... diverges to + �
Sol. :

S
n

= 12 + 22 + 32 + ..... n terms

= Sum of sequare of first n natural no.

�  
n n +  1  2n +  1b g b g

6

lim  S  lim
n n +  1  2n +  1

 =  n � �
b g b g

6

<S
n
> diverges to + �

So given series diverges to + �

4. Prove that the series un�  where un = – n diverges to – �

Sol. :

S
n

= – 1, – 2, – 3 ...... n terms

�  
– n n +  1b g

2

lim S   lim 
– n n +  1

n �
L
NM

O
QP

b g
2

= – �
< S

n
> diverges to – � so given series diverges to – �

3. Test the convergence or other wise of 2 – 2 + 2 – 2.....

Sol. :

S
n

= 2 – 2 + 2 – 2 + ........ n term

�
RST 

 0 ,     n   is    even

 2 ,     n    is   odd

<S
n
> is oscillates finite. So given series is oscillates finite.

Theorem 1: Necessary condition for convergence if an infinite series un�  is convergent

then lim
n��

 u  =  0n
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Proof :

Given un�  is convergent to prove lim u
n
 = 0

Since un�  is divergent � <S
n
> is divergent when S

n
 denote nth partial Sum of un�

� lim S
n
 = finite and unique

= S (say)

� lim S
n –1

 = S

S
n
 – S

n – 1
= u

1
 + u

2
 + ..... u

n – 1
 + u

n
 –

(u
1
 + u

2
 + ..... + u

n – 2
 + u

n – 1
)

= u
n

taking lim as n � � both side we have

0 =  lim  u
n

n
��

� �
��

 lim  u
n

n 0

Hence un�  is convergent. 0 then lim u
n
 = 0

Converse of the above theorem is not true we take the series--

u  =  1 +  
1

2
  

1

3
  ......  

1

n
 ......n� � � �  for this

Series, we have

u  
1

n
 n �

lim u  lim 
1

n
 =  0n �

But this series is not convergent.

S  1+
1

2
+

1

3
 +  ......+ 

1

n

1

n

1

n
....

1

n
n � � � � �

S  
n

n
 =  nn �

i.e. S   nn �   Which tends to infinity as n  � �

97

Infinite Series



So, above series is divergent to + �
lim u

n
 = 0

Note :  If lim  u  0
n

n
��

� , then un�  is not convergent.

Theorem 2: A series of Positive terms either converges or diverges to + �

Proof :

Let S
n
 be nth partial Sum of positive term Series un�

S
n
 = u

1
 + u

2
 + .....+ u

n

S
n + 1

 = u
1
 + u

2
 + ...... u

n
 + u

n + 1

S
n + 1

 – S
n 
= u

n + 1 
> 0    � n

� S
n + 1

 > S
n � n

� < S
n
> is monotonically increasing sequence.

Case I :

If < S
n
> is bounded. Then < S

n
> is convergent so un�  is convergent

Case II :

If <S
n
> is not bounded above then <S

n
> diverges to + � i.e. un�  is diverges to + �

Corollary :

If un�  is a series of + ve terms and lim  u 0
n

n
��

�  then the series diverges to + �

Theorem 3 : A positive term series un�  is converges if sequence <S
n
> of its partial

Sum is bounded above.

Proof :

Let <S
n
> is bounded above. Since un�  is positive term series the sequence <S

n
> is

monotonically increasing. We know a monotonically increasing bounded above sequence

is converges so <S
n
> is converges. Hence un�  is converges.

Converse Part : Let un�  is converges. Then <S
n
> is also converges. Since Every

convergent sequence is bounded so <S
n
> is bounded. Hence <S

n
> is bounded above.

Theorem 4  : Cauchy General principle of Convergence for series
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An infinite series un�  converges iff to each � > 0 � a + ve integer m s.t.  � n > m we

have | u
m + 1 

+ u
m + 2

 +.....+ u
n
 | < �

Proof :

The series un�  is convergent ��<S
n
> sequence of its partial Sum is convergent

� For each �> 0 � a + ve integer m s.t. |S
n
 – S

m
| < ��� n > m

(By Cauchy general principle of convergence of sequence)

� |u
m+1 

+ u
m+2 

+ ....+u
n
| < ��� n > m

Hence the result.

Theorem 5: Let m be any given positive integer then both the series u
1
 + u

2
 + ..... + u

m + 1
+....

and u
m + 1 

+ u
m + 2 

+......have same nature.

Proof :

let s
n 
and S

N
 be the nth partial sum of given series

u
1
 + u

2
 +......u

m+1
 and u

m+1
, u

m+2
..

i.e. S
n
 = u

1
 + u

2
 + .....+ u

n

S
N
 = u

m + 1 
+ u

m + 2
 + .....+ u

m + n

S
N
 = u

1
 + u

2
 + .....+ u

m + n 
– (u

1
 + u

2
 + .....+ u

m
)

S
N 

= S
m + n 

– S
m

S
m
 is a fixed quantity due to Sum of finite no. of terms.

So < S
n
> and < S

N
> both have same nature i.e. both are together converge, diverge or

oscillate.

Theorem 6: If un�  converges to u and � n�  is converges to v then un n�� �b g
converges to u + v respectively.

We have to prove. un n�� �b g  converges to

(u + v ) Let S
n
 = (u

1
 + v

1
) +  (u

2
 + v

2
) + ......+ (u

n
 + v

n
)

then S
n
 = (u

1
 + u

2
 + .....+ u

n
 ) + (v

1
 + v

2
 + .....v

n
)

= G
n
 + H

n
Where G

n
 = u

1
 + u

2
 + .....+ u

n

H
n
 = v

1
 + v

2
 + .....v

n

lim S
n
 = lim (G

n
 + H

n
)
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= lim G
n
 + lim H

n

= u + v

�  un�  convergent u & � n�  convergent to v

Hence u  n n�� �b g  converges to u + v

Similarly we can prove u  n n– �b g�  converges to (u – v)

Theorem 7:

(i) If un� converges to u then k un� converges to k u were k is a constant.

(ii) If un� is divergent then k un� is also divergent where k � 0.

Proof : (i)

Let S
n
 = u

1
 + ......+ u

n
,   G

n
 = k u

1
 + ..... + k u

n

G
n
 = k(u

1
 + ......+ u

n
) = k S

n

lim G
n
 = lim k S

n
 = k lim S

n
 = k u   [� un�  converges to u]

� � k un   Converges to k u.

Proof : (ii)

Let un�  diverges to + � then lim S
n
 = + �

lim G
n

= lim (k u
1
 + ...... + k u

n
)

= lim k (u
1
 + ......+ u

n
)

= k lim (u
1
 + ......+ u

n
)

= k lim S
n

= k ( + �)

= ��or – ��it k > 0 or < 0

k un�  diverges  � k ��0

Similarly if un�  diverges to – � , k un�  is diverges.

For k � 0
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EXAMPLE

1. By using Cauchy’s general principle of convergence show that the geris 
1

n�  does not converges ?

Sol. :

Let given series 1

n�  is convergent. Take � =  
1

2
 by Cauchy general principle of

convergence. � a + ve integer m s.t.

|u
m + 1 

+ .....+ u
n
| < �  n > m

i.e. 
1

m 1
 +  .......+ 

1

n
 <  

1

2
  n  m

�
� �

1

m 1
 +  .......+ 

1

n
 <  

1

2
    n  m

�
� �

Now take n = 2 m.

1

m 1
 +  

1

m 2
 .......+ 

1

n
  

1

m 1
  

1

m 2
 

1

m m� �
�

�
�

�
�

�
........

�  
1

2m
 +  

1

2m
 +  .......+ 

1

2m

�  
m

2m
 =  

1

2

Which is contradiction. So our assumption is wrong.

Hence the given series is not converges.

Theorem 8: P - series or the Auxiliary series :

The infinite series 
1

n
  =  

1

1
 +  

1

2
 +  ......+ 

1

n
 +  .....p p p p�  is converges if P > 1 and

diverges if P � 1

Proof : Case I

If P > 1

We write the given series as
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1

n
  =  

1

1
 +  

1

2

1

3
 +  

1

4

1

5

1

6

1

7
 +....

p p p p p p p p� �FHG
I
KJ � � �F
HG

I
KJ    ---(1)

p p p p p p p

1 1 1 1 1 1 1
....

1 2 2 4 4 4 4

�  
1

1
 +  

2

2
 +  

4

4
 +....p p p

� F
HG
I
KJ 

1

1
 +  

2

2
 +  

2

2
 +....

P P

2

b gP      ---(2)

The R.H.S. series (2) is geometric series with common ratio p-1

1
1

2
. So the R.H.S. series

(2) is convergent. Hence the given series is also converges. if P = 1. then the series 
1

np� is

reduced in the form 
1

n
 i.e.

1 1 1 1 1 1 1 1
.....

1 2 3 4 5 6 7n

=  
1

1
       � � �FHG

I
KJ �

1

2

1

3

1

4
........

� � � �FHG
I
KJ � 

1

1
       

1

2

1

4

1

4
........

� � � 1    
1

2
 

1

2
........

The R.H.S. series is divergent as lim u   0n � �
1

2

So, the given series is divergent.

If P < 1

We have P < 1 then np < n
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i.e. 
1

n
  

1

np �

But 
1

n�  is divergent we prove above when P = 1

Hence 
1

np�  is divergent.

3.5. Comparison Test :

(i) Let un�  and � n�  both series are of positive terms. if � n�  convergent and � a + ve

constant k s.t. u
n
 � k v

n
  �  n then un�  is convergent.

(ii) If � n�  is divergent and � a + ve constant k s.t. u
n
 � k v

n
  � n then un�  is divergent.

Proof :

Let S
n
 = u

1
 + u

2
 + ......+ u

n

Gn = v
1
 + v

2
 + ....... v

n

Sn � k v
1
 + k v

2
 + ....... k v

n
        [�u

n
 � k v

n
 � n]

    = k (v
1
 +  v

2
 + .......+ v

n
 )

     = k Gn  � n                ---(1)

� n�  is convergent So < G
n
 > is convergent and Hence < G

n 
> is bounded. So � a + ve

constant m s.t. G
n
 < m  � n        ---(2)

So  Sn < k m � n From (1) & (2)

� Sn < H Where H = k m

� < Sn > is bounded above.

Also un�  is positive terms series, < Sn > is monotonically increasing.

Since < Sn > is monotonically increasing and bounded above so < Sn > is divergent.

Hence un� is convergent. Similarly we can prove the second part i.e. it � n�  is

divergent, and � positive constant k such that. u
n
 � k v

n
 � n then un�  is divergent.

(ii) Let un�  and � n�  both are series of positive terns. If � n�  is convergent and � a

positive no. k s.t. n nu kv n > m then un�  is converges if � n�  is divergent and � a
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positive no. k s.t. u
n
 � k v

n
 � n > m then un�  is divergent.

Proof :

Let Sn = u
1
 + u

2
 ....... + u

n

u
n
 = v

1
 + v

2
 ......+ v

n

u
n
 � k v

n
  (given)  � n > m

So,  u
m + 1

 + u
m + 2

 + .....+ u
n
 � k [v

m + 1 
+ .....+ v

n
]

� Sn – Sm � k(Gn – Gm)    � n > m

� Sn � k Gn + (Sm – k Gm)    � n > m

� Sn � k Gn + H           ---(1)

Where H = Sm – k Gn a fixed no.

Now, � n�  is convergent. The sequence < Gn > is convergent and hence < Gn > is

bounded above.

< Sn > is bounded above From (1)

Since  un�  is + ve terms series. < Sn > is monotonically increasing.

Now, < Sn > is monotonically increasing and bounded above. So < Sn > is convergent.

Hence un�  is convergent.

For II nd Part.

Let Sn = u
1
 + u

2
 + .......+ u

n
 & G

n
 = v

1
 + v

2
 ......+ v

n

u
n
 > k v

n
     � n > m

So u
m +1

 + .......+ u
n
 > k (v

m + 1
+......+ v

n
)

(Sn – Sm) > k (Gn – Gm)      � n > m

Sn > k Gn + Sm – k Gm       � n > m

Sn > k Gn + H        Where H = Sm – k Gm   a fixed no.

� � n�  is divergent, < Gn> is divergent so to each + ve no. h
1
, � a + ve integer m s.t. Gn

> h
1
    � n > m

1

Let m
2
 = max {m , m

1
} then Gn > h

1 
     � n > m

2

Sn > k h
1
 + H =k

1
      � n > m

2

So     < Sn> is divergent

Hence un�  is divergent.
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(iii) If un�  & � n�  both are series of positive terms and lim
n

n
��

 
u

 =  n

�
�  where  l is finite

and non-zero then both series are converge or diverge together.

Proof :

Since un�  & � n�  are series of positive terms

So, 0n

n

u

v

� � lim
u

  0n

� n

� l > 0             [since l is non-zero and lim
u

  n

� n

� � ]

Now,  lim
u

  n

� n

� �  � to each  � >  0 � a + ve integer m s.t. 
u

 –        n  mn

� n

� � � � �

� (l – �) v
n
 < u

n
 < (l + �) v

n
    � n > m

Take � > 0 s.t. (l – � ) v
n
 > 0

From (1) k
1
 v

n
 < u

n
 < k

2
 v

n 
   � n > m             ---(1)

Where  k
1
 = l – �

k
2
 = l + �

(a) Take un�  convergent.

k
1
 v

n
 < u

n 
    � n > m

So,  � n�  is convergent   [�  un�  is convergent.]

(b) Take un�  is divergent

u
n
 < k

2
 v

n 
    From (1)

� n�  is divergent     [�  un�  is divergent.]

(c) Take � n�  convergent.

 u
n
 < k

2
 v

n 
    � n > m      From (1)
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un�  is convergent.              [�  n��   is convergent.]

(d) Take � n�  divergent.

k
1
 v

n
 < u

n
    From (1)

un�  divergent         [�  n��   is convergent]

Hence both the series un�  and � n�  convergent and divergent together..

Remark :

(i) un�  is converges if lim 
u

 =  0n

� n

 and � n�  convergesges

(ii) un�  is diverges if lim 
u

 =  n

� n

�  and � n�  divergesges

(I) If � + ve integer m s.t. 
u

u
       n mn

n 1

n

� �

� � �
�
� n 1

where we have both the series un�  &

� n�  are positive terms series then if

(a) � n�  is convergent then un�  is convergent.

(b) un� is divergent then � n�  is divergent.

Proof :

Let S
n
 and G

n
 are nth Partial Sum of un�  and � n�  respectively i.e.

S
n
 = u

1
 + u

2
 +......u

n

G
n
 =  v

1
 + v

2
 ......+ v

n

Now,  
u

u
 =  

u u u u

u u u  u
m

n

m m + 1 m + 2 n –1

m+1 m + 2 n –1 n

� �
�

.......

.......

=  
u

u
  

u

u
  .........  

u

u
m

m+1

m + 1

m + 2

n –1

n

� � �
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� � � � � �     .........      n mm

m+1

m + 1

m + 2

n –1

n

�
�

�
�

�
�

=                 
u

u
         n mm

n

n

n 1

n

n + 1

�
�

�
�

�
�

�
L
NM

O
QP

� �

� � 
u

   m m

nun

�
�

m
n m

m

u
u v

v

� � � �  u  k      n mn m�

Where   k
u

 m

n

�
�

= Fixed no

Hence if � n�  converges then un�  is converges and if � n�  diverges then un�
diverges.

EXAMPLE

1. Show that the series

u  1 +  
1

2
 +  

1

3
 +  

1

4
 +........+ 

1

n
 n 2 3 4 n� � �.......  i.e. u

1

n
n n� ��  is convergent

?
Sol. :

We have for all   n > 2   nn > 2n

� � 
1

n
  

1

2
 n n             ---(1)

So take u  =   
1

n
   and   =  

1

2
n n n n�         ---(2)

From (1) & (2)  u
n
 < v

n
     � n > 2

So u  =  
1

n
 n n� �   is convergent because � n n =  

1

2
 � �  is convergent as it is

geometric series with common ratio ½.
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2. Show that the series 
1 1 1

............ ......
log 2 log3 log n

divergent?
Sol. :

We have for  n > 1,  log n < n

1 1
> n 1

log n n

2 2

1 1
> >

log n nn n

By P – test series  
1

n  n �

�

�
2

 is divergent as P = 1. So given series

1 1 1
............ ......

log 2 log3 log n   is divergent.

3. Show that the series whose nth term is sin
1

n
 is divergent.

Sol. :

u  =  sin
1

nn

take 
1

nv
n

lim
u

 =  lim
sin

1

n
1

n

 =  1n

n�
 finite and non-zero.

So, by comparison test both the series un�  and � n�  are convergent and divergent

together. The series � n� ��  
1

n
 is diverges because 

1

np�  is divergent if P  � 1. Here

P = 1

Hence the given series is divergent.
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4. Discuss the convergence or divergence of the series whose nth terms are

(i)
n

n 12 �
(ii)

2n – 1

3n 2n 5

2
1

3

3
1
4

d i
d i� �

(iii)
1

1
1

n
�

(iv) tan
1

n
–1

Sol. :

(i) u  
n

n 1
 =  

1

n  +  
1

n

n 2
3 2

2

�
� F

HG
I
KJ1

take  � n 3 2 
1

n
�

lim
u

 =  lim 
1

1 +
1

n

 =  1n

n
2

� , finite and non-zero

So, by comparision tast both the series un�  and � n�  are convergent or divergent

together. Since the P – Series 
1

n3 2�  is convergent as 
3

P = > 1
2

 . So un�  is convergent.

(ii) u  
2n – 1

3n 2n 5
n

2
1

3

3
1
4

�
� �

d i
d i

1
2

3
3

2

n 1
3

4
4

2 3

1
n 2 -

n
u =

2 5
n 3+ +

n n
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1

3

2

1 1

12 4

2 3

1
2 -

1 n
=

2 5n 3+ +
n n

Take � n �  
1

n
1

12
 ,   So,  lim

u
 lim 

2 –  
1

n

3
2

n

5

n

n
2

1

3

2 3

� n

�

F
HG

I
KJ

� �F
HG

I
KJ

1

4

�  
2

1

3

1

43
  Finite and non-zero.

So by comparison test both the series un�  and � n�  are convergent or divergent

together. Since the P – series 
1

n
1

12b g
�  is divergent as P =  

1

12
  1�  so the series un� is

convergent.

(iii) u  
1

1+
1
n

n �

� � � lim u
1

1 +
1

n

 =  1  0n lim

So, the series un�  is divergent.

(iv) u  tan
1

nn
–1�

u
1

n
 –  

1

3n
   n 3� �

1

5 5n
.......
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u
1

n
 1 –  

1

3n
   n 2

� �L
NM

O
QP

1

5 4n
.......

Take  � n

1

n
�

lim  
u

 =  lim  1 –  
1

3n
  

n
 

n

n

n 2�� ��
�L

NM
O
QP� n

1

5 4
.......

= 1 , Finite and non-zero.

So by comparison test both the series un�  and � n�  are convergent or divergent

together. Since the series 
1

n�  is divergent as P = 1 So the given series un�  is divergent.

5. Test the convergence of the Following series

(i)
1

2
 +  

2

3
 +  

3

4
 +  

4

5
 +  .......

(ii) 1
1

2

2 3
2

2 3

 +   +  
3

 +  
4

 +  
4

5
 +  .......

3 4

4

5

Sol. :

(i) u  
1

2
 +  

2

3
 +  

3

4
 +  

4

5
 +  .......n ��

u  
n

n +  1n �

Now Proceed as Ex- 4(iii). The given series is divergent.

(ii) 1
1

2

2 3
2

2 3

 +   +  
3

 +  
4

 +  
4

5
 +  .......

3 4

4

5

leaving the first term we have

u   +  
3

 +  
4

 +  .......n 3 4
�� 1

2

2 3
2

2 3

u  =  
n

n 1
n

n

n 1� �b g
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Take 
n

n n+1

n 1
v =

n n

n n
n

n+1 n+1n n n
n

u n n .n
lim = lim = lim

v n+1 n+1
1
n

�
�

�
R
S|
T|

U
V|
W|��

lim
n

 
n

n 1
  

n

n +1

n

nb g

�  
1

e
 Finite and non-zero.

So by comparison test both the series un�  and � n�  are convergent or divergent

together. Since the P – Series � n� �=  
1

n
 is divergent as P = 1. So the given series

un�  is also divergent.

6. Test the following series for convergence

(i) n 1 – n2
1

2�
L
NMM

O
QPP� d i (ii) n 1 – n3

1

2

3

2�
L
NMM

O
QPP� d i

(iii) n 1 – n
1

2

1

2�
L
NMM

O
QPP� b g (iv) n 1 – n4

1

2 4�
L
NMM

O
QPP� d i d i– 1

1

2

Sol. :

(i)

1
2 21 1nu n

u  n 1 – nn
2

1

2� �d i
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�
� �

�
 

n 1 – n  n 1 + n

n 1 + n

2 2

2

e j e j
e j

�
�

� � � �

L

N

MMMM

O

Q

PPPP
 

n 1 –  n  

n 1 + n
 =  

1

n 1 + n
 =  

1

n

1

1
1
n

1

2 2

2 2

Take � n  =  
1

n

n

n

u 1
lim lim

v 1
1+ +1

n

n n

�  
1

2
 Finite and non-zero.

So, by comparison test both the series un�  and � n�  are convergent or divergent

together. Since the series � n� �=  
1

n
 is divergent as P = 1 so the given series un�  is

also divergent.

(ii) u  n 1 – nn
3

1

2

3

2� �
L
NMM

O
QPP� � d i

u  n 1  –  nn
3

1

2

3

2� �d i

�

�
F
HG

I
KJ �
F
HG

I
KJ

�

 

n 1  –  n  n 1  +  n

n 1  +  n

3
1

2

3

2 3
1

2

3

2

3
1

2

3

2

d i d i

d i
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u  
n 1 – n  

n 1  +  n

 =  
1

n 1  +  n
n

3 3

3
1
2

3

2 3
1
2

3

2

�
�

� �d i d i

u  
1

n
 

1

1+
1

n

n

3

�
F
HG
I
KJ �

L

N

MMMMM

O

Q

PPPPPb g
3

2

1

2
1

Take � n  
1

n
 � 3 2

u
  

1

1+
1

n

 n

n

3

�
�
F
HG
I
KJ �

1

2
1

lim  
u

  lim 
1

1 +
1

n

 =  
1

2
n

n

3

�
�
F
HG
I
KJ �

1

2
1

 , Finite and non-zero

So, by comparison test both the series un�  and � n�  are convergent or divergent

together. Since the series � n 3 2 =  
1

n� �  is convergent as P =  
3

2
  1�  So the series

un�  is convergent.

(iii) n 1 – n
1

2

1

2�
L
NMM

O
QPP� b g

u  =  n 1 – nn

1

2

1

2�
L
NMM

O
QPP

b g
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1 11 1
2 22 2

n 11
22

n+1 - n n+1 + n

u =

n+1 + n

u  =  
 +  1 –  n

n 1 + n

 =  
1

n 1 + n

 =  
1

n
n 1

2

1

2
1

2

1

2

n

n
� � �FHG

I
KJ �

L

N

MMMMM

O

Q

PPPPPb g b g b g1 2 1

2

1

1
1

1

Take 
u

 =  
1

n
n

n� b g1 2

lim lim
n n�� �� F

HG
I
KJ �

L

N

MMMMM

O

Q

PPPPP
 

u
 =   

1

1+
1

n

 =  
1

2
n

n�
1

2
1

 Finite and non-zero.

So by comparison test both the series un�  and � n�  are convergent or divergent

together. Since the series � n 1 2 =  
1

n� �  is divergent as P =  
1

2
  1 � So the given series

un�  is divergent.

(iv)
n

n

u +1
n m

u
�

u  =  n 1 – n – 1n
4

1

2 4
1

2�d i d i
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1 1 1 1
4 4 4 42 2 2 2

n 1 1
4 42 2

n +1 n 1 n +1 n 1

u =

n +1 n 1

u  =  
n 1 – n – 1

n 1 + n – 1

 =  
2

n 1 + n – 1
n

4 4

4
1
2 4

1
2 4

1
2 4

1
2

�

� �

d i d i
d i d i d i d i

u  =  
2

n 1
1

n
1 –

1

n

n

2
4

1

2

4

1

2
�FHG
I
KJ � FHG

I
KJ

L

N
MM

O

Q
PP

Take � n 2 =  
1

n

lim  
u

=  lim  
2

1 +  
1

n
 

1

n

 =  
2

2
 =  1

n

n

n
n

4 4

�� �� F
HG

I
KJ � FHG

I
KJ

� 1

2

1

2
1 –

 Finite and non-zero.

So, by comparison test both the series un�  and � n�  are convergent or divergent

together. Since the series � n 2 =  
1

n� �  is convergent as P = 2 > 1 so the given series

un�  is also convergent.

7. Show that the series  
1

2 3n n
n  1 ��

�

�  is convergent ?
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Sol. :

u  
1

2 3
 =  

1

3

1

1
2

3

n n n n n�
�

� FHG
I
KJ

L

N

MMMM

O

Q

PPPP

lim  
u

 =  lim
1

1
2

3

 =  1
n

n

n
n n�� ��

� FHG
I
KJ

F

H

GGGG

I

K

JJJJ�
  Finite and non-zero.

So by comparison test both the series un�  and � n�  are convergent or divergent

together. Since the series � n n =  
1

3� �  is convergent because 
1

3n�  is geometric se-

ries with common ratio 
1

3
  1� . Hence the given series un�  is convergent.

8. Test the convergence for the series

(i)  
1

n a +  
b
n

F
HG

I
KJ

� (ii)  
1

n
 

n + 2

n + 33

F
HG
I
KJ�

n

Sol. :

(i)  u
1

n a  
b
n

n �
�FHG
I
KJ

��

u  =  
1

n a  
b
n

 =  
1

n nn a b n

�FHG
I
KJ

�

Take � n a =  
1

n
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lim  
u

=  lim  
1

n
 =  lim =  1    as lim  n

n

n

n
n b n n n

n

�� �� �� ��

F
HG
I
KJ �

�
1

1
nn

b

e j
Finite and non-zero.

By comparison test both the series in convergent or divergent together. Since the series

� n  
1

n� ��  is convergent if a > 1 and divergent a � 1

So the given series un�  is convergent if a > 1 and divergent if a � 1

(ii) u  
1

n
 

n + 2

n + 3n 3

n

� �� F
HG
I
KJ

u  
1

n
 

n + 2

n + 3n 3

n

� F
HG
I
KJ

L
NM

O
QP

Choose �
�n 3 n

n

n

n

 
1

n
 ,  lim  

u
 =  lim  

n + 2

n + 3
� F

HG
I
KJ�� ��

n

=  lim  
1+

2
n

1
3
n

n

n

n��

F
HG
I
KJ

�FHG
I
KJ

=  
e

e
 =  

1

e

2

3   Finite and non-zero.

So by comparison test both the series un�  and � n�  are convergent ot divergent

together. since the series � n 3 
1

n
� ��  is convergent as P = 3 > 1, So the given series

un�  is convergent.

3.6. Cauchy’s root test :

Let un�  infinite series of positive terms and lim  u
n

n

1

n
��

�b g �

If (a) l < 1 then the series is convergent.
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(b) l > 1 then the series is divergent.

(c) l = 1 then the test fails.

Proof :

lim  u
n

n

1

n
��

�b g �  or  u
n 
> 0    � n and un

1

nb g  presents for nth. root of u
n
. lim  u

n
n

1

n
�

�
0
b g �  , to

each � > 0 � a + ve integer m such then.

u         n  mn

1

nb g – � � � � �

� � –    u    +       n  mn

1
n� � � � � �

(l – )n < u
n
 < (l + �)n   �  n > m         ---(1)

(a) If l < 1 then take � > 0 s.t. s = l + � < 1

So 0 � l < l + � = S < 1

From, (i) u
n
 < (l + �)n = S

n
   �  n > m

By Comparison test un�  is convergent as nS  is

Convergent because nS  is geometric series with common ratio s < 1.

(b) If l > 1 , then take � > 0 s.t.  S = l – � > |

(1) gives (l – �)n < u
n
   �  n > m

= S
n
 < u

n
    �  n > m

By comparison test un�  divergent as nS  is divergent series because nS  is

geometric series with common ratio s > 1.

(c) For l = 1

Consider the series 
1

n2�  this series is divergent as P = 2 > 1 ,

u  
1

n
  u  

1

n
 

1

n
n 2 n 2 1

n

� � � FHG
I
KJ �
F
HG
I
KJb g

1
1 2

n
n

lim  u  lim  
1

nn
n

n
1 n

�� ��
�
F
HG
I
KJ �b g

1 2

1n

This shows for l = 1 a series may be convergent.
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We consider the another series 
1

n�

1

n�  is divergent as P = 1

un
n

n
� � � 

1

n
  u  

1

n
nb g b g

1

1

� �
�� ��

 lim  u  lim
1

n
 =  1

n
n

n
b g

b g
1

1
n

n

This show for l = 1, series may be divergent.

Hence for l = 1, Cauchy root test fail.

1. Show by Cauchy root test the series 
1

log nb gn�  is convergent.

Sol. :

u =
1

log n
n n� � b g

u =
1

log n
n nb g

u =  
1

log n
 

1

log nn
1 n

nb g b g
L
N
MM

O
Q
PP �

1 n

Now, taking limit as n � �

lim  u  lim  
1

log n
 =  0 <  1

n
n

1 n

n�� ��
�b g

Hence by Cauchy root test given series is convergent.

2. Test the convergence of the following series by Cauchy root test

(i)
x

n

n

�� (ii) 1
1

n

–n2

�FHG
I
KJ�
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(iii)
n

n

�
�
F
HG
I
KJ � �� 1

2

2

 x  ,   x  0n

Sol. :

(i)
x

n
   u  

x

n

n

n

n

�
� �

��

u  
x

n
 

x

n
n

1 n
n 1 n

1 nb g b g�
�
F
HG
I
KJ �

�

Taking limit as n � � we have

lim  u  lim  
x

n
 =  lim  

x

n
  

n

nn
n

1 n

n 1 n n 1 n�� �� ��
�

� �
�b g b g b g

�
�

F
HG
I
KJ �

L
N
MM

O
Q
PP �

F
HG
I
KJ �

�� �� ��
 lim  

n
 

x

n
 =  lim  

n
 lim

x

nn

n

n

n

nn n

n n1 1

= e . 0 = 0 < 1

So by Cauchy root test given series is convergent.

(ii) 1
1

n

–n2

�FHG
I
KJ�

u  1 +  
1

n
 lim u =  lim  1 +

1

nn

–n

n
n

1 n

n

–n
1
n2 2

� FHG
I
KJ � F

HG
I
KJ

L
N
MM

O
Q
PP�� ��

b g

� F
HG
I
KJ

�
��

 lim  
1

1+
1
n

 =  
1

e
  1

n n

So by Cauchy root test given series is convergent.

(iii)
n

n

�
�
F
HG
I
KJ � �� 1

2

2

 x  ,   x  0n
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u  
n +1

n + 2
 xn

n
n� FHG

I
KJ �

� � F
HG
I
KJ �

L
N
MM

O
Q
PP � F

HG
I
KJ ��� �� ��

 lim u  lim  
n +1

n + 2
 x  lim  

n +1

n + 2
 x

x
n

n

n
n

n
b g1

1

n

n

Therefore by Cauchy root test if x < 1, then the given series is convergent if x > 1, then the
given series is divergent if x = 1 then the test is fail.

So take x = 1

W have u  =  
n +1

n + 2n
F
HG
I
KJ

n

lim u  =  lim 
1 +

1
n

1
2
n

 =  
1

e
  0n

n

n

F
HG
I
KJ

�FHG
I
KJ

�

So the series is divergent when x = 1. Hence the given series is convergent when x < 1 and
divergent when x � 1

3. Test the convergence of the following series.

(i)
1

3 3 3 3

3

2 3
 +  

2
 +  

3
 +.......  

x
 

3 3 3

n
�......

(ii)
2

1 2 3

2

2 3 4
 –  

2

1
 

3
 –  

3

2
 

4
 –  

4

3

3 4F
HG

I
KJ �
F
HG

I
KJ �
F
HG

I
KJ �

–1 –2 –3

......

Sol. :

(i) u  
x

3
  u  

x

3n

3

n n

3

3� �� � �

311
31 nn

n
n 3n n n

x x 1
lim u lim lim 1

3 3 3

By Cauchy root test given series is convergent.
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(ii)

nn 1

n n 1

x 1 x 1
u

x x

� �
F
HG
I
KJ

L
N
MM

O
Q
PP u  

x +1
 –  

x +1

xn

n+1 –n

b g
x

-1n+1
1

n
n

x+1 x+1
lim u = lim -

x xx x

-1n+1
1 1

= lim 1 - 1
x xx

� �FHG
I
KJ
F
HG

I
KJ

R
S|T|

U
V|W|

L

N
MM

O

Q
PP��

lim   1 +  
1

xx
1

1
1

x

n–1 –1

–

� � 
1

e – 1
  1

By Cauchy root test given series is convergent.

3.7. D’Alembert’s Ratio test :

If nu  is a series of positive terms and

lim  
u 1

u
 =  

n

n

n
��

�
�

(i) If l < 1 then un�  is converge

(ii) If l > 1 then un�  is diverges

(iii) If l = 1 then test fail

We state the D’Alembert’s Ratio test in other way as---

If un�  is a series of positive terms and lim  
u

u
 =  

n

n

n 1
�� �

�
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(i) If l > 1 then un�  is converge

(ii) If l < 1 then un�  is diverges

(iii) If l = 1 then test fail

Proof :

It is given that un�  is positive terms series so 
n

n

u +1
> 0

u

�
�

� �
�

� � 
u

u
    lim 

u

u
    0n

n

n

n

1
0

1
�

Since lim 
u 1

u
    to each   0n

n

�
� � � ��

� a Integer ‘m’ such then

u 1

u
         n  mn

n

�
� � � �– �

� � –    
u

   +      n  mn + 1� � � � � �b g
un

          ---(1)

By Putting n = m, m + 1, ....., n – 1 in (1) we get (n – m) inequality we multiply the

corresponding side of the inequality we get  � � –    
u

u
   +  

n –m n

m

n –  m� � � �b g b g          ---(2)

Consider lim  
u

u
    1

n

n +1

m
��

� ��

We take ��> 0 s.t.   l + ��= S < 1

So we have 0 ��l < S < 1

Now (2) gives 
u

u
  Sn

m

n –  m�

i.e. u
n
 < u

m
 Sn – m       � n � m

or.   u   
u

S
  Sn

m
m

n� �
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or  u
n
 < k Sn    Where  k =  

u

S
m
m

Sn�  is convergent series because Sn�  is a geometric series whose common ratio is s

< 1. By comparison test series un�  is convergent.

Now, Consider lim 
u

u
 =    1n + 1

n

� �

We take � > 0 S.t.  l – � = S > 1

we have � –   
u

u
n –  m n

m

� �b g      From     ---(2)

i.e.    S  
u

u
n –  m n

m

�

i.e.
S

S
  

u

u
  S

u

S
  u

n

m
n

m

n m

m
n� � �

� Sn k
1
 < u

n

Where k   
u

S
1

m
m�

Sn�  is divergent series because Sn�  is a geometric series whose common ratio S > 1.

By comparison test the series un�  is divergent.

Now we take two series for the case

lim  
u

u
 =  1

n

n + 1

n
��

Consider 
1

n2�  this series is convergent as P = 2 > 1

u
1

n
 ,   u  =  

1

n +  1
  So lim 

u
 =  lim

n
n 2 n + 1

n + 1
2

� �
�b g b g2 2

1u nn

= 1 = l
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Consider 
1

n� . This series is divergent as P = 1

u
1

n
 ,   u  =  

1

n +  1
 ,   lim  

u

u
 =  lim

n

n 1n n + 1
n

n + 1

n
n

�
��� ��

= 1 = l

From above we conclude that l = 1. D’Alembert ratio test cannot decide the behavior of
series.

Hence if l = 1  test fail.

Remark 1 :

It un�  is a series of positive terms and lim 
u

u
 =  n + 1

n

�  then the series un�  is

divergent. If lim  
u

u
 =  

n

n

n + 1
��

�  then the series is convergent.

1. By D’Alembert’s ratio test show that the following series are convergent.

(i) 1 +  
3

2
 +  

5

3
 +  

7

4
 +.......

� � �

(ii) 1 +  
2

2
 +  

3

3
 +  

4

4
 +.......

P P P

� � �

(iii)
1

1 +  2
 +  

2

1 +  2
 +  

3

1 +  2
  +.......2 3

Sol. :

(i) u  = 1 +  
3

2
 +  

5

3
 +  

7

4
 +.......

2n – 1

n
 +  .....n� � � � �

u  
2n – 1

nn � �

u  
2n +1

n +1n + 1 � �2
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lim
u

u
 lim 

2n +1

n +1
  

n

2n – 1
n + 1

n

�
�

�
�

2 b g

� � � 
2n +1

n – 1
  

1

n +  1
 =  0  1lim

2

Hence by D’Alembert’s ratio test given series is convergent.

(ii) u  =  1 +  
2

2
 +  

3

3
 +  

4

4
 +.......n

P P P

� � � �

u  
n

n
    ,   u  

n +  1

n 1n

P

n + 1

p

�
�

�
� �
b g

lim  
u

  lim  
n +  1

n 1
  

n

n
 =  lim  

1

n +1n

n + 1

n

p

P n�� �� ��
�

� �
�
�

�FHG
I
KJ �

u nn

Pb g
1

1

= 0 < 1

Hence by D’Alembert’s ratio test given series is convergent.

(iii) u
1

1 +  2
+

2

1 +  2
+

3

1 +  2
 +.....+ 

n

1+ 2
.....n 2 3 n� ��

u  
n

1+ 2
  ,   u  

n +1

1+ 2
n n n + 1 n+1� �

lim
u

u
 lim 

n +1

1+ 2
  

1 + 2

n
n + 1

n
n+1

n

� �
L
NM

O
QP

� �FHG
I
KJ
F
HG
I
KJ

�

L

N

MMMM

O

Q

PPPP
�

��
�

  
1

2
 

1+
1

2
 =  

1

2
  1

n

lim
n

n
n

1
1

1
1

2 1

Hence by D’Alembert’s ratio test given series is convergent.
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2. Show that the series 
�� n

nn  is convergent ?

Sol. :

u  =  
n

n
   ,   u  =  

n +  1

n +  1
n n n + 1 n 1

� �
�b g

lim  
u

u
 =  lim 

n +1

n +1
  

n

nn

n + 1

n
n 1

n

�� �

�
�
�

L
N
MM

O
Q
PPb g

=  lim 
1

1 +
1
n

 =  
1

e
  1F

HG
I
KJ

�n

Hence by ‘DAlembert’s ratio test given series is convergent.

3. Test for convergence or divergence of the series

(a) 1 + 2x + 3x2 + 4x3........

(b) a + (a+d) x + (a + 2d) x2 + .......

Sol. :

u  1+  2x +  3x 4x ........n
2 3� � ��

u
n
 = n xn –1

u
n +1 

= (n + 1) xn

lim
n

nu��

F
HG
I
KJ 

u
 =  lim

n +  1

n
 x =  xn + 1

So the given series is convergent if x < 1 and divergent if x > 1.

If x = 1 then u  n =  
1

n
n –1� � ��  which is divergent as P = – 1 < 1

(b) u  a + (a + d) x + (a + 2d) x .... [a (n – 1)d] x ....n
2 n –1� � � � �� u

n
 = [a + (n – 1) d ]

xn –1

u
n + 1

 = (a + nd) xn

lim  
u

u
= lim

a +  nd

a +  n – 1  d
  x

n

n + 1

n
��

�
F
HG

I
KJb g
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=  lim
n

n – 1
  

a
n

 d

a

n – 1
  d

  x�
�LNM
O
QP

�L
NM

O
QP
�

R
S
||

T
||

U
V
||

W
||

= x

By D’Alembert’s ratio test given series is convegent if x < 1 and divergent if x > 1 .   if x
= 1 then

u
n
 = a + (n – 1) d

we have  lim u
n
 = �

and un�  is + ve terms series. So it is divergent.

4. Test the series for convergence

1
2 3

�
� � �

� 
x

1
 +  

x
 +  

x
 +......

2 3

leaving first terms we have the series

x

1
 +  

x
 +  

x
 +......

2 3

� � �2 3

2 n+1

n n+1

x x
u = , u =

2 x+1

lim 
u

u
 =  lim

x

x 1
  

n

x
  x =  0  1n + 1

n

n + 1

n� �
�
�

�
�

� �lim
1

1n

Hence by D’Alembert’s ratio test given series is convergent.

5. Test for convergence of the following series

(i)
a

a x

n

n n�� (ii)
1

x xn –n�

Sol. :

u =  
a

a xn

n

n n� � �

u  =  
a

a x
  u  

a

a  xn

n

n n n + 1

n + 1

n + 1 n + 1�
� �

�
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lim
u

u
 =  lim

a

a x
  

a  x

a
n + 1

n

n + 1

n + 1 n + 1

n n

n�
�

�L
NM

O
QP

=  lim
a

x

1
a

x

1
a

x

n

n 1

� FHG
I
KJ

� FHG
I
KJ

L

N

MMMM

O

Q

PPPP
�

If x > a then 
n

n

u 1
lim 1

u  i.e. given series is convergent. If x < a then

lim
u

u
  lim

a a 1
x
a

a 1
x

a

n + 1

n

n
n

n 1
n 1

�

� � FHG
I
KJ

L
N
MM

O
Q
PP

� FHG
I
KJ

L
N
MM

O
Q
PP

�
�  = 1 test fail.

For this case,

lim u  lim
a

a x
 =  1  0n

n

n n
�

�
�

So the given series divergent for x < a

If x = a then the series is reduced in the form 
1

2
 +  

1

2
 +  

1

2
 +.......   is divergent.

Hence the given series is convergent if x > a and divergent if x � a

(ii) u
1

x x
n n –n�

���

 u  =
1

x x
    ,   u  n n –n n + 1�

�
�� �

1
1 1x xn n–

n n 2n
n 1

2nn 1n 1
n

u x x x 1
lim lim lim x

u x 1x x

Now there arise three cases

(i) if x < 1
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2n
n 1

2n
n

u x 1
lim lim x x

u x 1

By D’Alembert’s test given series is convergent.

(ii) if x > 1

2n
n 1

2n
n

u x 1
lim lim x x

u x 1

2n

2n

1
1 1xlim

1 x1
x

 =
1

1
x

So the given series is convergent.

(iii) If x = 1

Then un ��  
1

2
 +  

1

2
 +  

1

2
 +......

S
n
 = nth partial Sum = 

n

2

lim S  =  lim
n

2n

So the series is divergent.

Hence the given series is convergent if x > 1 or x < 1 and divergent x = 1

6. Test the following series for convergence

(i)
n

n 1
  x  ,    x  0

2

n

�
� �� b g

(ii)
n

n 1
  x  ,    x  02

n

�
� ��

Sol. :

(i) u  
n

n 1
  xn 2

n�
�

�� �
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u
n

n 1
  x   ,   u  

n +1
  xn 2

n
n + 1

n + 1�
�

� �
� �

�
n 1 1

2b g

lim
u

u
 =  lim

n +  1

n
  

n 1

n 1 1
  xn 1

n

2

2

� �

� �
�

b g

lim 1+
1

n
  

n 1

n 2 2n
  x   

2

2

F
HG
I
KJ

�
� �

�
L
N
MM

O
Q
PP

R
S|
T|

U
V|
W|

lim 1+
1

n
  

1+
1

n

1
2
n

2

n

  x  =  x
2

2

F
HG
I
KJ � �

�

L

N

MMMM

O

Q

PPPP
If x < 1 then by ratio test given series is convergent.

If x > 1 then by ratio test given series is divergent.

If x = 1 then the ratio test fail.

Now, take x = 1 the given series is reduced

u  =  
n

n
n 2� � �1

 u =  
n

n
 =  

1

n
  

1

1 +  
1
n

n 2 �
�

1

Take   =
1

n
 n�

 lim
u

= lim
1

1+
1
n

 =  1n

n�   Finite and non-zero. So by comparison test both the series

un�  and � n�  are convergent or divergent together. Since the series � n 1 2 
1

n� ��
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is divergent as P =  
1

2
  1�   So the series un�  is divergent.

Hence the given series is convergent if x < 1 and divergent if x � 1.

(ii) u  
n

n 1
  x  ,    x  0n 2

n�
�

� �� �

u =  
n

n 1
  x  ,  u

n 1

n 1 1
  xn 2

n
n + 1 2

n+1

�
� �

�

� �
�� b g

lim
u

u
=  lim

n 1

n 1 1
  

n 1

n
  xn+1

n
2

2�

� �
�

�
�

L
N
MM

O
Q
PPb g

2

2

n+1 n +1
lim .x

n + 2n+ 2 n

= lim 1
1

n
  

1 +
1

n

1  
2

n
  

2

n

  x
2

2

�FHG
I
KJ �

F
HG

I
KJ

� �F
HG

I
KJ
�

L

N

MMMM

O

Q

PPPP
= x

If x < 1 then by ratio test given series is convergent.

If x > 1 then by ratio test given series is divergent.

If x = 1 then the ratio test fail.

When x = 1 then the series is u  
n

n 1
n 2�

���

 u  =  
n

n 1
 =  

1

n
  

1

1+
1

n

n 2

2
�

�

F

H
GGG

I

K
JJJ

take   =  
1

nn�
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 lim
u

 =  lim
1

1+
1

n

 =  1n

n
2

�  Finite and non-zero so by comparison test both the series

un�  and � n�  are convergent or divergent together. Since the series � n  
1

n� ��  is

divergent because P = 1.

So the series un�  is divergent.

Hence the given series is convergent if x < 1 and divergent if x � 1.

Improper Integral :

An integral which have the form f x dx
a R

b g
�

�z  is said to be improper integral

If  F S f x dx
S

a R

, S [a, [

and F(S) � finite limit ‘l’ as S ��� then f x dx
a R

b g
�

�z  is converge to l other wise divergent.

3.8. Cauchy’s Integral Test :

Theorem 9:

Consider f(x) is any non-negative monotonically decreasing integrable function on [1, [

then the series 
1n

f x  and improper integral f xb g
1

�z  dx  converge and diverge together..

Proof :

It is given that f(x) is non-negative so this implies f(x) � 0 � x � [1, �[. Therefore the

given series f xb g�  has non-negative terms. We have n � N s.t. n � x � n + 1 for any pt.

x � [1 , �[.

So, f(n) � f(x) � f(n +1) because        ---(1)

f(x) is monotonically decreasing on [1, �[

Now integrate (1) From n to n + 1 we have
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f n  dx  f x  dx  f n 1  dx
n

n+1

n

n + 1

n

n + 1

b g b g b gz z z� � �

� � � �zf n  f x  dx   f n 1
n

n + 1

b g b g b g            ---(2)

Put n = 1 in (2) we get

2

1
f 1 f x dx f 2

Put n = 2 in (2) we get

f 2  f x  dx   f 3
2

3

b g b g b g� �z
Put n = 3 in (2) we get

f 3  f x  dx   f 4
3

4

b g b g b g� �z
Put n = n –1 in (2) we get

1
f n 1 f x dx f

n

n
n

Add the above inequality we have

Sn – f n f x  dx  f x  dx f x  dx Sn – f 1
1

2

2

3

n–1

n

b g b g b g b g b g� � � � �z z z.....

Where Sn = f(1) + ......+ f(n) = nth partial Sum of the series f nb g� .

� � �zSn – f n f x  dx  Sn –  f 1
1

n

b g b g b g

1
f n Sn f x dx f 1

n

         ---(3)

Take n1
Sn f x dx h n N

n

Now we show that < hn > is monotonically decreasing sequence.
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h – h  = S – f x  dx – S + f x  dxn+1 n n+1

1

n+1

n

1

n

b g b gz z
=  S – S – f x  dx – f x  dxn+1 n

1

n+1

1

n

b g b g b gz zL
N
MM

O
Q
PP

1

1 1

1
n n n

n

f n f x dx f x dx f x dx

1

1 0
n

n

f n f x dx

So  h
n + 1

 � h
n
        � n � N

� < h
n
 > is monotonically decreasing.

From (3) h
n
 � f(n) � 0.  So < h

n
> is bounded below.

From above < h
n
 > is convergent.

h S – f x  dx     S h f x  dxn n

1

n

n n

1

n

� � � �z zb g b g

and < h
n
> is convergent. So sequence < S

n
> and 

1
f x dx

n

converge or diverge together..

Consequently f n  and the improper integral f x  dx
1

b g
�z  both are converge or divergege

together.

EXAMPLE

1. By using integral test, show that the series  
1

np
n  1�

�

�  converge if  P > 1 and diverge if

P  1?
Sol. :

p

1
f n =

n
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p

1
f x =

x
   , f(x) is non-negative and decreasing on [1, �[

When P = 1

Take In =  f x  dx =  
1

x
 dx =  log

1

n

1

n
nb gz z

So, f x  dx =  lim  log  =  
1

n

nb g
�

��z �

Therefore by Integral test both.

Integral and the series converge together. Since integral is divergent so the series 
1

np�
is divergent.

When P � 1,

Then In
1

x
 dxp

1

n

� z
�

�
F
HG
I
KJ � F

HG
I
KJ

�x

–P 1
  

1

1 –  P

1

x

–p 1

1

n

p–1

n

� F
HG

I
KJ

F
HG

I
KJ 

1

1 –  P

1

x
 –1  =  

1

P –  1
1–

1

np–1 P–1

Now there are two sub cases

(a) When P > 1

Then In  
1

P –  1
1–

1

nP–1
� F

HG
I
KJ           P – 1 is + ve

lim
n��

In =  
1

P –  1
 =  Finite

So, 
1

f x dx   Converge. By integral test given series is also convergent.
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(b) When 0  P < 1

In =  
1

P – 1
1–

1

n
 =  

1

1 –  p

1

n
 – 1

p–1 p–1

F
HG

I
KJ

F
HG

I
KJ   P – 1 is negative

lim  In =  
1

1 –  P
  =  

n��
� � �b g

So 
1

f x dx  is divergent.

By Integral test given series is divergent.

Hence the given series  
 = 1

1

n P
n

�

�  convergent if P > 1 and divergent if 0 < P  � 1.

2. By use of Integral test discuss the convergence of the series  
1

n log n
    ,   P  0

P
n = 2 b g
�

� �  ?

Sol. :

f n  
1

n log n
    ,   P  0Pb g b g� �

p

1
f x = , P > 0

x logx

Given series is non-negative and decreasing for x � 2 and P > 0.

When P = 1,  Take In =  
1

x log x
 dx

2

n

b gz
�  log  log x

2

n

�  log log n –  log log 2b g
lim log
n�� ��

� In =  lim  log n –  log log 2  =  
n
b g

So f x  dx
2
b g�z  divergent. By Integral test given series is divergent.

When P ��1.
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2 2

1

log

n n

PIn f x dx
x x

� z log x

x
 dx

–P

2

n b g

take log x = t

1
dx = dt

x

when x = z

then t = log z

when x = n then t = log n

So,  In t dt
–P

log 2

log n
� z b g

�
F
HG
I
KJ

t

1– P

1–P

log 2

log n

�  
1

1– P
log n – log 2

1–P 1–Pb g b g           ---(1)

Take log x = t     
1

x
 dx  dt�

When x = 2         t = log 2

When x = n         t = log n.

Now we consider two sub cases

(a) When P < 1 , we have

1-P 1-P1
In = lim log n log 2

1- P n
       From (1)

lim  In  
1

1 P
  log n  –  log 2

n

1–P 1–P

�� ��
�

�
lim
n
b g b g

�
�

� � � 
1

1 P
   =  
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So, f x  dx
2
b g�z  is divergent. By integral test

Given series is divergent.

(b) When P > 1

In  
1

1– P
 log n – log 2

1–P 1–p� b g b g           From (1)

lim  In  
1

1– P
  log n – log 2

n

1–P 1–p

��
� lim b g b g

�  
1

1– P
  –  log 2

1–P
0 b g

�  
log 2

P – 1

1–Pb g
                         [� 1 – P < 0]

= Finite

So, f x  dx
2
b g�z  Convergent. By integral test given series is convergent. Hence given series

 
1

n log n
 ,  P  0

p
n = 2 b g

�
�

�  convergent if P > 1 and divergent if 0 < P  � 1.

3. Show that the series (i)  
1

n 12
n = 1 �

�

�   (ii)  
1

n n +  1
 

n = 1 b g
�

�  are convergent ?

Sol. :

(i) We test the series  
1

n 12
n = 1 �

�

�  for convergence

2 2

1 1
f n = f x =

n +1 x +1

f(x) is non-negative and monotonically decreasing function of x for x � 1

Take In =     f x  dx
1

n b gz
=     

1

x 1
 dx =  tan x2

–1

1

n

1

n

�z d i
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= tan – 1 n – tan–1 1

In =  tan n –  
4

–1 �

lim In =  lim tan n –  
4

–1 � � �
�

2 4
–

=  
4

�
 = finite.

So,     f x
1
b g�z  convergent. By Integral test given series is also convergent.

(ii) Given    
1

n n 1n = 1 �

�

� b g

Take f n  =  
1

n n 1
b g b g�

�
�

  f x  =  
1

x x 1
b g b g

Take In     f x  dx
1

n
� z b g

� � LNM
O
QPz z    

1

x x + 1
 dx

1

x
 –  

1

x +1
 dx

1

n

1

n

b g

�  log x –  log 1 +  xb g
1

x

= log n – log (1 + n) + log 2

lim  In  lim log n –  log 1 +  n log 2
n n�� ��

� �b g

�  lim log
n

1 + n
 +  log 2

�  lim log
1

1 +
1

n

 +  log 2
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= 0 + log 2 = log 2 = finite

So, 
1

f x dx  convergent. By integral test given series is convergent.

4. By integral test show that the series

(i)    
1

n n – 12
n = 2

�

� (ii)    
1

n2
n = 1 �

�

�
1

2d i
are convergent.

Sol. :

(i) Given series is

   
1

n n – 12
n = 2

F
HG

I
KJ

�

�

Take  f n  =  
1

n n – 12
b g

�  f x  =  
1

x x – 12
b g

f(x) is positive and decreasing for x � 2

Now take In    f x  dx =      
1

x x – 1
 dx

2

n

22

n
� z zb g

�  Sec–1x
nd i
2

= ( Sec–1 n – Sec –1 2)

lim  In =  lim Sec n –  Sec 2
n n

–1 –1

�� ��

�
��

lim  Sec n –  Sec 2 =  
2

 –  
3n

–1 –1 � �

=  
6

�
  Finite

So f x  dx
2
b g�z  is convergent. By integral test given series is also convergent.
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(ii) Given    
1

n2
n = 1 �

�

�
1

2d i

2 22 2

1 1
Let f n = f x =

n +1 x +1

f(x) is positive and decreasing

Take In =    f x  dx =   
x

x 1
 dx

1

n

2 21

nb g
d iz z

�

�
�

F
HG
I
KJ �

L
NM

O
QP –  

1

2

1

x 1
 =  

1

2

1

2
 –  

1

n 12
1

n

2

lim lim
n n�� ��

�
�

L
NM

O
QP In  

1

2

1

2
 –  

1

n 1
 =  

1

42
 = Finite

So, 
1

f x dx  convergent. By integral test given series is convergent.

EXERCISE (3A)

Test the following series for convergence

1.
1

1 2� � �
� +  

1

2 3
 +........+

1

n n +1b g ......

2. cos ....... cos ......
� � � �
2 2

 +  cos
4

 +  cos
6
� � �

n

3.
1

1 2�
� +  

2

1+ 2 3
 +  

3

1+ 3 4
.......

4.
1

1 2 3� � � � � �
� +  

3

2 3 4
 +  

5

3 4 5
.......

5. a + b + a2 + b2 + a3 + b3+........
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6.
2 3

6

n n

n
n

�L
NM

O
QP

�

�
 = 1

7.
1

1 4� � �
� +  

1

2 5
 +  

1

3 6
......

8.
1

5 7 9 11
 +  

2
 +  

3
 +  

4
�......

9.
2 2 2 2 2 21 .2 2 .3 3 .4

........
1 2 3

10. Test the convergence of the series

(i)
n

n

�L
NM

O
QP� 1 –  n – 1

(ii)
n

n p

�L
NM

O
QP� 1 –  n

(iii) log n

1

log n
(iv) n2 1 1��  – n2 –

(v)
n

n

2

3

1

1

–

�

L
N
MM

O
Q
PP� (vi)

n

n2 3 3�

L
NM

O
QP�

11. 1
1

22� � +  
1

3
 +  

1

42 2 ........

12. Test the convergence of the series

(i)

2n log n

log n

log n 1
(ii)

n

n

n

�
L
NM
O
QP� 1

2

(iii)
n

n

n

n

n
�

�

L
N
MM

O
Q
PP

�

�
1

1

1b g
 –  

n +1

n

 –

13.
2

1 1 2 1 3 12 2 2� � �
� +  

2
 +  

22 3

.......
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14.
1

3
 +  

1 2

3 5
 +  

1 2 3

3 5 7
 +  

1 2 3 4

3 5 7 9

�
�

� �
� �

� � �
� � �

�......

15. 1 + 3x + 5x2 + 7x3+.......

16.
x x x2 3 4

2 1 3 2 4 3
 +   +     x  0� �.......,

17.
x x x

2 3 3 4 4 5

2 3

 +   +  �.......

18.
a

n3 6 11 22
 +  

a
 +  

a
 +  .......+

a
  a  2

2 3 n

�
� �......, b g

19. (i)

2
n

2

n -1
.x

n +1

(ii)
n

n

�
�

�
L
NM

O
QP� 1

13
  xn

(iii)
x

a n

n

�

L
NM

O
QP�

(iv)
1

1

n

nL
NM
O
QP�

20.
x

� � �
� �

1 3 5
 +  

x
 +  

x
  x  0

3 5

......., b g
21. Test the convergence of the series

(i) n e– n 2� (ii)
1

n 1  log n 1� �� b g b g

(iii)
1

3
n log  nb g�

ANSWERS EXERCISE (3A)

1. Convergent 2. Divergent
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3. Divergent 4. Convergent

5. un n�� �b g  converge only when |a| and |b| <

Where u an� � � � � a +  a2 3 ......

� n b� � � � � b +  b2 3 ......

6. Convergent 7. Convergent

8. Divergent 9. Convergent

10. (i) Convergent (ii) Convergent P  
1

2
�

and divergent P  
1

2
�

(iii) Convergent (iv) divergent.

(v) Convergent (vi) divergent

11. Convergent

12. (i) Convergent (ii) Convergent

(iii) Convergent

13. divergent 14. Convergent

15. Convergent if x < 1 and divergent if x � 1

16. Convergent if x � 1 and divergent if x > 1

17. Convergent if x � 1 and divergent if x > 1

18. Convergent if 0 < a � 1 and divergent if a > 1

19. (i) Convergent if x < 1 and divergent if x � 1

(ii) Convergent if x < 1 and divergent if x � 1

(iii) Convergent if x < 1 and divergent if x � 1

(iv) Divergent.

20. Convergent.

21. (i) Convergent. (ii) Divergent

(iii) Convergent

3.9. Alternating Series :

A series with alternatively positive and negative terms is said to be alternating series.
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Thus the infinite series of the form

–1 u  u – u u – u ..... –1 u ....
n–1

n 1 2 3 4
n–1

nb g b g� � � � ��
Where u

n
 > 0   �  n is an alternating series.

3.10. Leibnitz test :

An alternating series u
1
 – u

2
 + u

3
 – u

4
 + ....+(–1)n–1 u

n
 + ..... with u

n
 > 0    �  n is convergent

if

(a) u
n + 1 

� u
n
   �  n (b) lim u

n
 = 0

Proof :

Let S
n
 is the nth partial Sum of alternating series u

1
 – u

2
 + u

3
 – u

4
 + ...... We shall show that

< S
2n

> is convergent.

First we shall show < S
2n

> is bounded above.

S
2n

= u
1
 – u

2
 + u

3
 – u

4
 + ....+ u

2n –1 
– u

2n

= u
1
 – {[u

2
 – u

3
] + [u

4
 – u

5
] +......+ [u

2n
 – u

2n–1
] + u

2n
}

� S
2n

 � u
1

[� u
2
 � u

3
, u

4
 � u

5
,..... u

2n
 � u

2n –1
]

� S
2n

 is bounded above

Now, S
2n + 2 

= S
2n

 + u
2n + 1

 – u
2n +2

��S
2n + 2

 – S
2n 

= u
2n + 1

 – u
2n +2

� S
2n + 2

 – S
2n 
� 0      [� u

n
 � u

n + 1 �  n ��u
2n + 1

 � u
2n +2

]

� < S
2n

 > is monotonically increasing

Since < S
2n

 > is bounded above and monotonically increasing. So it is convergent if this
sequence converges to s then lim S

2n
 = S.

Now, S
2n +1

 = S
2n

 + u
2n + 1

= lim S
2n

 + lim u
2n + 1

= S + 0       [� lim u
n
 = 0]

= S

From above both the subsequence < S
2n

 > and < S
2n + 1

> converges to S.

� to each �� > 0 � + ve integer m/ & m* s.t.

| S
2n +1

 – S | < �     �  2n + 1 > m/

& | S
2n 

 – S | < �     �  2n  > m*

��| S
n
 – S | < �     �  n > m

If m = max( m , m*) then

| S
2n +1

 – S | < ���  2n+1 > m

and | S
2n 

 – S | < ��  n > m
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��| S
n
 – S | < �   �  n > m

� < S
n
 > converges to S

Hence –1 u
n–1

nb g�   is convergent.

1. Show that the alternating series –1
n–1b g� 1

n
 is convergent?

Sol. :

The given series is 1
1

2

1

3

1

4

1

5

1

6
– – – .........        � � �

u  
1

n
  ,     u

1

n 1n n + 1� �
�

u  u  
1

n
  

1

n 1
 

n +1– n

n n +1
     nn n+1– –�

�
� �

�
� �b g b g

1

1
0

n n

� u
n
 > u

n + 1
   �  n

lim u  lim
1

n
 0n � �

Hence by Leibnitz test given series is convergent.

2. Show that the series    –1  n ,  P  0
n–1

n 1

–Pb g
�

�

� �  is convergent?

Sol. :

Take u
n
 = n– P, P > 0

u  
1

n
n P�

n
P

P
� � � � � � �1  n  n + 1  n   

1

n + 1
  

1

n
      nP

Pb g b g
� u

n + 1
 < u

n
      � n

lim u  lim
1

n
 =  0n P�

By Leibnitz test given series is convergent.
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3. Show that the series –
1

x n – 1 a
n–1b g b g��  , x > 0, a > 0 is convergent.

Sol.:

u
1

x n – 1 a
 ,    x  0,    a  0n � �

� �b g

u
1

x  na
 n+1 � �

u – u
1

x + n – 1  a
 –  

1

x + na
=

x + na – x – na +  a

x + na  x + n – 1  a
n n+1 � b g b g b gc h

=
a

x + na  x + n – 1  a
  0b g b gc h �

� � � u  u     n n+1 n

lim u  lim
1

x + n – 1  a
 =  0n � b g

By Leibnitz test given series is convergent.

3.11.Absolute convergence and conditional convergence :

A series un� is called absolutely convergent if the series un�  is convergent.

4. the series 1 –  
1

2 2
 +  

1

3 3
.......  is absolutely convergent because the series

1 1
1 .......

2 2 3 3
 is convergent.

A series un�  is called conditionally (or semi or non-absolutely) convergent if the series

un�
(a) Convergent

(b) Not absolutely i.e. un�  is divergent.
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5.
1

1
  

1

2
 +  

1

3
 –  

1

4
 +  – .......  is conditional convergent.

Theorem 10: Every absolutely convergent series is convergent but converse need not be
true.

Proof :

Let an�  is absolutely convergent this implies an�  is convergent. Since |a
n
| is

convergent so to each � > 0.

� a + ve integer m s.t.

| |a
m + 1

| + |a
m + 2

| + ..........+ |a
n
| | < �      �  n < m

� |a
m + 1

| + |a
m + 2

| + ..........+ |a
n
| < �      �  n < m

We have  |a + b|  � | a | + | b |

So,

|a
m + 1

+ a
m + 2

+..........+ a
n
| ��|a

m + 1
|+|a

m + 2
|+..........+|a

n
|< � � n > m

� |a
m + 1

+ a
m + 2

+..........+ a
n
| < �   � n > m

Hence by Cauchy general principle un�  is convergent.

Converse of the above theorem is not true. We take the 1
1

2

1

3

1

4
– .......� � �  this series is

convergent let 1
1

2

1

3

1

4
� � � �.......  i.e. un�  is divergent.

 Theorem 11: For the absolutely convergent series un� , the series of its + ve terms and

the series of its – ve terms both are convergent.

Proof :

We consider Sn is the nth partial Sum of un�  & Sn
1  is the nth partial Sum of un� . If

H
n
 and – G

n
 are the Sum of the + ve and – ve terms in Sn.

Sn = Hn – Gn

and Sn
1  = H

n
 + Gn

These gives H  
S S

2n
n
1

n�
�
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and              G
S – S

2n
n
1

n�            ---(1)

Now, Both the series un�  and un�  are convergent because un�  is absolutely

convergent. So sequence <S
n
> and Sn

1 are convergent.

Take lim S
n
 = t

1
 and lim Sn

1  = t
2

Taking lim as n ��� of (1) we have

lim H
n
 = ½ [lim Sn

1  + lim S
n
] = ½ (t

2
 + t

1
)

& lim G
n
 = ½ [lim Sn

1  – lim S
n
] = ½ (t

2
 – t

1
)

So, the sequence <H
n
> & <G

n
> are convergent.

Hence the series of + ve terms and the series of – ve terms are both convergent.

3.12.Rearrangement of series :

We consider a function f (domain I+ and Range I+) is one to one on I+ if un�  and � n�
are two series s.t. v

n
 = u

f(n)
 , n = 1, 2... Then � n�  is rearrangement of un� .

1. u 1 –  
1

2
  

1

3
 –  

1

4
  

1

5
 –  

1

6
.........n� � � � �  is a series then the series

1 1 1 1 1
1 .......

3 2 5 7 4nv  is the rearrangement of un� .

Theorem 12: When the terms of an absolutely convergent series are rearranged  the series
remains convergent and its sum is not changed.

Proof :

We consider an absolutely convergent series an� . If we rearranging the terms of an�
we get the series bn�  so that Every a in some b and Every b in some a.

When G
n
 is negative then a

n
 + |a

n
 | is 0 and when a

n
 is positive then a

n
 + |a

n
| is 2a

n

So, 0 � a
n
 + |a

n
 | � 2 |a

n
 | ,     �  n

� each term of a an n��c h  is non-negative and � the corresponding term of series

2 anc h�  Since anc h�  is convergent So 2 anc h�  is also convergent.
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Hence the series a an n��c h  is convergent (comparison test)

Consider anc h�  = S & a an n��c h  = S/

� � ��a  S – Sn        (1)

Both the series an�  and a an n��c h  have positive terms, they are not a affected by

rearrangement. Therefore a  =  b  =  Sn n� �
and a a  =  S =  b bn n n n� � �� �c h c h
� � ��b  S – Sn         ---(2)

(1) & (2) gives

a b S – Sn n� � ���
Hence when the terms of an absolutely convergent series are rearranged the series remains
convergent and its sum is not changed.

3.13.Riemann Rearrangement theorem :

Let un�  is a conditionally convergent series. Then un�  can be made converge to a

no.  or diverge to + � or – � or oscillate finitely or infinitely by appropriate rearrangement
of terms.

Proof :

We consider (i) �
n
 = u

n
 when u

n
 � 0 &

0 when u
n
 < 0 (ii) �

n
 = – u

n
 when u

n
 < 0 and

0 when u
n
 � 0

clearly u
n
 = �

n 
– �

n 
,  |u

n
| = |�

n 
+ �

n
|        ---(1)

at least on of � �n ,  n�� divergent because un�  is conditionally convergent so

un�  is divergent. Again from both the series � �n ,  n�� are converges together or

diverge together because un�  is convergent.

We conclude � �n ,  n��  are diverge. Since lim u
n
 = 0,

So lim �
n 
= lim �

n
= 0
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(a) Consider the minimum no. of terms of � n�  be n
1
 s.t. �

1
 + �

2
 + .... + �

n1 
> �

Now consider the minimum no. of terms of � n�  be m
1
 s.t.

�
1
 + �

2
 + .... + �

n1 
– �

1
 + �

2
 + .... + 

1m  
< ��

Again consider the minimum no of next terms of � n� , n
2
 (following �

n1
) s.t.

�
1
 + �

2
 +....+ �

n1 
– �

1
 - �

2
 + ....- 

1m  
+ 

1 1n  
+ 

1 2n +.....
1 nn >��

Consider the minimum no. of next term of � n� , m
2
 s.t.

�
1
 +....+ �

n1 
– �

1
 - �

2
....�

1m  
+ 

1 1n  
+ 

1 2n n  –  
1 1m .....

1 2m 1 2m m

above process continue indefinitely.

If � n�  is rearrangement series of un�  and <S
n
> its sequence of Partial Sum.

We have 
1nS  > ��, 

1 1n mS < �..... we can easily show that <S
n
> converge to ��.

So � n�  converge to �.

(b) We consider

�
1
 + �

2
 +....+ �

m 
– �

1
 + 

1 1m +....+ 
2m  

– �
2 
+ 

2+1m +.......

It is rearrangement of un� , say � n� . Its Partial Sum is G
n
 (say)

Now the Partial Sum of � n�  is unbounded. First we take m
1
 so bigger s.t.

�
1
 +......+ 

1m + 1+��
1

Then m
2
 > m

1
 so big s.t.

�
1
 +......+ 

1m + 
1+1m + 

2m  > 2 + b
1
 + b

2

Generally m
n
> m

n–1
 so big s.t.

�
1
 +......+ 

nm > n +�
1
+.....+ �

n 
,   n � N

Since Every Partial Sum in 
1+1mG  , 

2+2mG  ,.....of � n�  with last negative term – �
n
 is

greater than n � N , so these partial sum are not bounded above. Consequently � n�
diverge to + �.
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It we take the rearrangement – �
1
– �

2
....... – 

1m  
+ �

1
 – 

1+1m  
– 

1+2m – 
2m  

+ �
2
 – 

2+1m ........

like wise above we can show that rearrangement diverge to – �.

For other cases we consider the proper rearrangement and can be proved easily similarly.

EXAMPLE

1. Test the series 1 1
1

2

1

2

1

3

1

3
– – – ........         � � �  for convergence. If we rearrange

the terms of the above series we get two series.

1
1

2

1

3
� �   1 +    

1

4
 –  

1

2
 +  

1

5
– .......  and 1

1

2

1

3
� � +   –  1  

1

4
+  

1

5
 –  

1

2
.......

Find their Sum ?

Sol. :

Given, 1 1
1

2

1

2

1

3

1

3
– – – ..........         � � �

Since we have  S
2n 

= 0  � lim S
2n

 = 0

S  
1

n +1
    lim S  lim

1

n +1
02n 1 2n+1� � � � �

S
2n +2 

= 0
 
 � lim S

2n+2
 = 0

Sum of the series tends to 0 as n tending to �.

So the given series is convergent.

II nd Part :

Let S
1
 and S

2
 are the Sum of first and second rearrange series of given series respectively.

S 1  
1

2
 –  1  

1

3
  

1

4
 –  

1

2
  

1

5
  

1

6
 –  

1

3
 ......1 � � � � � � �

� F
HG
I
KJ

L
NM

O
QP

F
HG

I
KJ

L
NM

O
QP

F
HG
I
KJ

L
NM

O
QP 1+

1

2
 +  

1

3
 +  

1

4
 –  

1

2
 +  

1

5
 +  

1

6
 –

1

3
 +.....– 1

� FHG
I
KJ
F
HG

I
KJ
F
HG
I
KJ 1–

1

2
 +  

1

3
 –  

1

4
 +  

1

5
 –

1

6
 +.....

�  1 –
1

2
 +  

1

3
 –  

1

4
 +  

1

5
 –

1

6
 +.....
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= log (1 + 1) = log 2

S lim 1 – 1 +  
1

2
 –  

1

2
 +......+ 

1

n
 –  

1

n
 +   

1

n + i2
n

i  1

2n

� F
HG

I
KJ
L
NM

O
QP

L
N
MM

O
Q
PP��

�
�

� F
HG
I
KJ

L
NM

O
QP�

� lim 0 +   
1

n + ii  1

2n

� F
HG
I
KJ �

L

N

MMM

O

Q

PPP� �
� z� lim  

1

n + i
 =  lim  

1
n  =  

dx

1+ xi  1

2n

i  1

2n

1
0

2

i

n

= log 3.

EXAMPLE

1. Is the series   
–1

 = 1

b gn
n n

–1�

�  is conditionally convergent ?

Sol. :

  
–1

 =  
1

1
 –  

1

2
 +  

1

3
 –  

1

4
 +......

 = 1

b gn
n n

–1�

�

un �  
1

n
 ,  u  =  

1

n +1
n+1

u
n

n –  u  
1

n
 –  

1

n +1
 =  

n +1 –  n

 n +1
  0n+1 � �

un � � u     nn+1

lim   lim
1

n
 = 0un �

By Leibnitz test given series is convergent.

Again we take the series
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–1

 =  
1

1
 +  

1

2
 +  

1

3
 +  

1

4
 +  

1

5 = 1

b gn
n n

–

.....
1�

� �

�� 1

n
1

2

= divergent as P  
1

2
  1� �

So given series is conditionally convergent.

2. Show that the following series is not conditionally convergent

(i) 1
1

5
 –  

1

3
 –  

1

7
 +......�

(ii)
1

2 1 1 1 1� � � �
� –  

1

3
 +  

1

4
 –  

1

5
.....

Sol. :

(i) We have 1
1

5
 –  

1

3
 –  

1

7
 +......�

Here n n+1

1 1
u = , u =

2 n-1 2n+1

2n + 1  > 2n – 1      �  n

� � 
1

2n +1
   

1

2n – 1

� u
n+1

 < u
n      � n

lim u  lim 
1

2n – 1
  n � � 0

By Leibnitz test given series is convergent.

Now take 1� � 
1

3
 +  

1

5
 +  

1

7
.......

un  =  
1

2n – 1
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� n �  
1

n

lim
un

n�
 =  lim

n

2n – 1
 =  lim

1

2 –
1
n

 =  
1

2

= Finite and non-zero

So, by comparison test both the series un�  & � n�  converge or diverge together..

Since � n n� �� 1
 is divergent as P = 1 so the series un�  is divergent.

Hence the given series is conditionally convergent.

(ii) We have to show the series

1

2 1 1 1 1� � � �
� –  

1

3
 +  

1

4
 –  

1

5
....... is conditionally convergent.

u  
1

n +1 1
   ,   u  

1

n + 2 +  1
n n+1�

�
�

Since, n +1 1   n + 2 +  1      n� � �e j e j

So, 
1

n +1 1
  

1

n + 2 +  1
     n

�
� �

� u
n
 > u

n + 1 
     � n

lim  u  lim
1

n +1 1
 =  0n � �

By Leibnitz test given series is convergent

Now take,  
1

2 1 1 1� � �
� +  

1

3
 +  

1

4
......

un  =  
1

n +1 �1

Take � n  =  
1

n
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lim
u

n
n

n�
 =  lim 

n
 =  1

� �1 1
 Finite and non-zero

So, by comparison test both the series un�  & nv  are convergent or divergent

together. Since � n

1

n
� ��  is divergent as P =  

1

2
  1�  so the series un�  is

divergent.

Hence the given series is conditionally convergent.

3. Examine the series –1 n – n
n 2b g ��  for absolutely convergence ?

Sol. :

Given series is –1 n – n
n 2b g �� 1

u  n  1 – nn
2� �

u  
n 1 – n

n 1 n
 =  

n 1– n

n 1 – n
 =  

1

n 1 – n
n

2

2

2 2

2 2
�

�

� �

�

� �

e j

u  
1

n +1 1 n 1
n+1 2

�
� � �b g b g

Since, n +1 1 n 1   n  + n      n
2 2b g b g� � �L

NM
O
QP � � �1

�
� � �

�
�

 
1

n +1 1 n 1
  

1

n  + n2 2b g b g d i1
� u

n+1
 < u

n
        � n

lim u  lim
1

n  + n
 =  0n 2

�
�1

By Leibnitz test the given series is convergent.
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Now take the series u  =  n 1 – nn
2 ���

u  =  
1

n 1 + n
n 2 �

Consider � n �  
1

n

lim
u

 =  lim
n

n 1 + n
 =  lim

1

n 1

n
 +1

n

n
2 2

2

� � �

= ½ = Finite and non-zero.

By Comparison test un�  & nv  both series are converge or diverge together. Since

the series � n� �� 1

n
 is divergent so the series un�  is divergent. Hence the given

series is conditionally convergent.

4. Show that the series 1
1

2 2
– ........ +  

1

3 3
 is absolutely convergent ?

Sol. :

We have –1 – ........
–b g� �

n

n n

1 1
1

1

2 2
 =  +  

1

3 3
 –  

1

4 4

u
n n n

n � �
�

1

1
 ,   u  

1

n +1
n+1 b g

� u
n+1

 < u
n
    �  n

lim limu
n n

n �
1

 =  0

By Leibnitz test given series is convergent.

Take the series un  =  1 +  
1

2 2
 +  

1

3 3
�� ......
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un  =  
1

n n
 =  

1

n

 =  
1

n
1+

1

2 b g
3

2

un� � =  
1

n
3

2
  is convergent

as P =  
3

2
  1�

Hence the given series is absolutely convergent.

EXERCISE (3B)

Test the following series for convergence

1.
1

log
......

 2
 –  

1

log 3
 +  

1

log 4
 –  

1

log 5
�

2.
1

5
 –  

1

7
 +  

1

9
 –  

1

11
�......

3. log – log log – log ......
1

2

2

3

3

4

4

5
F
HG
I
KJ
F
HG
I
KJ �
F
HG
I
KJ
F
HG
I
KJ�

4. 1 –  
1

2
 +  

1

3
 –  

1

42 2 2 �......

5.
log

.........
 2

2
 –  

log 3

3
 +  

log 4

42 2 2

6.
1

1 2� � � �
� –  

1

3 4
 +  

1

5 6
 –  

1

7 8
.......

7. –1
......

b gn
n

n
n�

�

�
� � � �L
NM

O
QP

1

1
1

2

1

3

1

Test the following series for absolutely convergence or conditionally convergence.

8.
1

1 2� � � �
� –  

1

3 4
 +  

1

5 6
 –  

1

7 8
........
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9. 1 –  
1

3
 +  

1

5
 –  

1

7� � �
�.......

10. (i) –1 Sin
1

n
n–1b g� (ii) –1

n

2n – 1
n–1b g�

(iii) –1
n

n +1

n+1

2b g� (iii) –1
1

n
 +  

1

n + 1

n–1

2 2b g b g
L
N
MM

O
Q
PP�

11. 1 1 2
1

3
1 2 33 –  

1

23 � � � �b g b g.......

12. 1
5 7

 –  
1

4 3
 +  

1

4
  

1

42 3� �
�

�
�......

13.
2x x

1 ..........
1 2

 for all values of x.

14. Prove that the series

2 sin 
x

3
 +  4 sin

x

9
 +  8 sin 

x

27
�.....  converge absolutely for all finite values of x.

15. Show that the series

1 – 2 + 3 – 4 + 5 – 6 + ...... oscillates finitely.

16. Prearrangement the series 1 –  
1

2
 +  

1

3
 –  

1

4
 +  

1

5
........  to reduce its sum to zero.

17. Prove that 1 2 –  
1

2
 +  

1

3
 –  

1

4
 +  ........ log�

18. Show that the rearrangement

1 +  
1

3
 –  

1

2
 +  

1

5
 +  

1

7
 –  

1

4
 �........  of the convergent series

1 –  
1

2
 +  

1

3
 –  

1

4
 +  

1

5
 ........  does not converge to the same limit ?

19. Prove that the series 
sin  n

n2

�F
HG

I
KJ� is absolutely convergent ?
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20. Prove if an�  converges and if b bn n– �� 1b g  converges absolutely then a bn n�
converges ?

21. Test the convergence and absolutely convergence of the series –1
–b gn Sin

n
1 1�  ?

ANSWERS EXERCISE (3B)

1. Convergent 2. Convergent

3. Convergent 4. Convergent

5. Convergent 6. Convergent

7. Convergent 8. Absolutely Convergent

9. Absolutely Convergent

10. (i) Conditionally Convergent

(ii) Not Convergent

(iii) Conditionally Convergent

(iv) absolutely Convergent

11. Conditionally Convergent

12. Absolutely Convergent

13. Absolutely Convergent

14. Conditionally Convergent.

***
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Chapter 4

POWER SERIES

4.1. Defination

A series of the form 
n

n
n 0

a z a  or 
n

n
n 0

a z is called power series where z is

complex variable and a, an are complex constant.

4.2. Absolute convergent

A power series 
n

n
n 0

a z is called absolute convergent if n
na z  is convergent.

4.3. Conditional convergent

A power series n
na z  is called conditional convergent or semi convergent if

n
na z is convergent but n

na z  is not convergent.

Theorem 1. The power series n
na z either

(i) Convergence for every z

(ii) Convergence only for z = 0

(iii) Convergence for sum value of z.

Proof : It is sufficient to produce an example in each case

(i) Consider the series 
nz

n

Let
n

n

z
u z

n
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n 1

n 1

z
u z

n 1

 Now by D Alembertis ratio test

n

n n
n

u n 1
lim lim

u 1 n

 Hence the power series 
nz

n
 is convergent for every z.

(ii) Consider the power series nz n

Let n
nu z Ln

Then
n

nn n
lim u lim n z

0 if z 0
if z 0

The given series is convergent for z = 0 and divergent for z  0

(iii) The geometric series 
n

n 1

z  converges for z 1  and diverge for z 1.

Theorem 2. If the power series 
n

n
n 1

a z  converse for particular values z0 of z then

it converges absolutely for every z for which  0z z .

Proof : Suppose the power series 
n

n
n 1

a z  is convergent for z = z0 so that its nth

term must tend to zero as n

i.e.
n

n 0n
lima z

So we can find number m > 0 s.t
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n
n 0a z M n

Now

n

n n
n n

00

M z
a z z M

zz

n

n
n

0

z
a z M

z

But geometric series 

n

n

0

z

z
 is convergent for all z,  s.t

0
0

z
1 i.e z z

z

Hence n
na z  is absolutely convergent for all z for which 0z z .

4.4. Radius of convergence of power series

Consider the power series n
n na z u z  then by cauchy root test we know

that nu z  is convergent if

1

n
n

n
lim u 1

1 1
n n n

n nn n
lim a z 1 lim a z 1

1

n
n

n
z lim a 1

1
z 1
R

Where 
1

n
nn

1
lim a

R
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z R

Here R is called radius of convergent and circle z R  is called circle of

convergence with in which power series n
na z  is convergent.

Hence If z R then series is convergent

and If z R then the series is divergent.

Note : Now if we draw a circle of radius R with centre at origin then

(i) The series n
na z  is convergent for every z within the circle

(ii) The series n
na z  is divergent for every z outside the circle.

This type circle is called circle of convergence and radius R is called radius of

convergence of the power series n
na z .

4.5. Important result for radius of convergence

(i)
n

n
n 1

a
R lim

a

(ii)
1

n
n

n

1
lim a

R

Remark :

(i) If R = 0 then series is convergent only when Z = 0

(ii) If R is finite then series is convergent at every point within circle and is
divergent at every point outside the circle.

Theorem 3. To show that power series n 1
nna z obtained by differentiating the

power series n
na z  has the same radius of convergence as the original series n

na z .
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Proof : Let R and R  be the radius of convergence of the series 
n

n
n 0

a z  and

n 1
n

n 0

na z   respectively, Now we shall prove that R = R

Then by definition of radius of convergence we know that.

11 1
nn n

n nn n

1
lim na lim n a

R

1

n
n

n
lim a

1

n

n
lim n 1�

1 1

R R

or R R Hence proved.

5.6 Important test for convergence of series

(i) If nu  is convergent then n
n
lim u 0

(ii) nu is absolutely convergent if

n nu v  and nv  is convergent     Bycomparison test

(iii) If 
1

n
n

n
lim u �  Then nu  is convergent if 1� and divergent 1� and

test fail if 1�     By root test

(iv) nu is convergent if 
n 1

n
n

u
lim 1

u and divergent if 
n 1

n
n

u
lim 1

u

     By ratio test
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EXAMPLE

1. Find the radius of convergence of the following series

(a)
n

n

z

n
(b) n n4 3i z

Solution :

(a) Here
n

n
n n

z
a z

n

Then n n

1
a

n

1
1 n
n

n nn n n

1 1 1
lim a lim lim 0

R n n

Then
1

R
0

(b) Here nn n
na z 4 3i z

Then n

na 4 3i

11
n nn

nn n

1
lim a lim 4 3i

R

    4 3i 16 9 25 5

1
R

5

2. Find the radius of convergence of the following series

(a)
n n
n n

1 1 1
b z where b 1 1 ...

2 3 n
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(b) n nlog n z

Solution :

(a) Here n n n
n na z b z

Then n
n na b

11
n nn

n n nn n n

1
lim a lim b lim b

R

     
n

1 1 1
lim 1 1 ... e

2 3 n

Then
1

R
e

(b) Here nn n
na z log n z

Then n

na log n

11
n nn

nn n

1
lim a lim log n

R

    
n
lim log n

R 0

3. Find the radius of convergence of the series 

2n
n1

1 z
n

Solution : Here

2n
n n

n

1
a z 1 z

n
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Then

2n

n

1
a 1

n

2
1

n n1

n
nn n

1 1
lim a lim 1

R n

     

n

n

1
lim 1 e

n

Then
1

R
e

4. Find the radius of convergence of the series

2 3z 1.3 1.3.5
z z .....

2 2.5 2.5.8

Solution : Here n

2n 11.3.5
a ....

2.5.8 3n 1 =

n 1

1.3.5... 2n 1 2n 1
a

2.5.8... 3n 1 3n 2 =

1

n
n 1

n n
n

1
1a1 2 2nlim lim

2R a 3 1
3n

     
2

3

Then
3

R
2
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5. Find the radius of convergence of the following series

(a) 

2

n

n 0

n
z

2n
(b) 

n n

2

2 z

1 in

(c) 

n n
1 z 2i

n

Solution :

(a) Here

2

n n
n

n 0

n
a z z

2n

Then

2

n

n
a

2n

22

n 1

n 1 nn 1
a

2 n 1 2n 2 2n 1 2n

Now

2

n 1

n

n 1 n 1a

a 2n 2 2n 1 2 2n 1

n 1

n n
n

n 1a 1 1
lim lim

a R 2 2n 1 4

Then R = 4

(b) Here
n n

n
n 2

2 z
a z

1 in

Then
n

n 2

2
a

1 in
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1
n1 n

n
n 2n n

1 2
lim a lim

R 1 in

    

1
n 1n

14n n
4 2n

2 2
lim lim

1 n 1 n

   

1

2n

1 4n
2 n

1 1
lim 1

2 n
n

   
2 51n

n

1 1
lim 1 .....

2 2n
n

    
1 1
x1x1
2 2

1

n

n
lim n 1�

(c) Here

n n
n

n
n 0

1 z 2i
a z a

n

Then

n

n

1
a

n

n 1

n 1

1
a

n 1

1
n n1

n
n 1n n n

n

11 1
lim a lim lim 1

R n
n

R = 1
1

n

n
lim n 1�
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Exercise : 4
1. Find the radius of convergence of the following power series

(a) 

2n
n1

1 z
n

(b) 
n

n

z

2 1

2. Find the radius of convergence of the following series

(a) nnz (b) 
n

n

n
z

n

3. Find the radius of convergence of the series 
nn 1
z

n 2 n 3

4. Find the radius of convergence of the series 
n

n 1

z

log n

6. If R1 and R2 are the radius of convergence of the power series n
na z  and

n
nb z  respectively, then show that the radius of convergence of the power

sereis n
n na b z  is R1 R2.

7. Find the radius of convergence of the series 
n

n

2 in
z

2
.

8. Prove that the series n n2 z has unit radius of convergence.

9. Find the radius of convergence of the series 
n

n 1

z

2
.

Answer : 4
1. (a) R = e,      (b) R = 2 2. (a) R = 0,      (b) R = e

3. R = 1 4. R = 1

7. R = 2 8. R = 1

***
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Chapter 5

UNIFORM CONVERGENCE SEQUENCE AND SERIES
OF THE FUNCTION

5.1. Introduction

In this chapter we confine out attention to uniform convergence of sequence
and series of the function

Sequence- A : Sequence in the set x is a mapping of the set N of positive
integer into X the image of S(n) of n denoted by Sn and written as {S1, S2,... Sn} or {Sn}.

5.2. Convergence of a sequence of a function

A sequence of the function {fn(x)} is defined on the set X is called cauchy

sequence, if for any given 0 00 n N.S.t m,n n

n mf x f x n X

5.3. Convergence of sequence

A sequence {fn(x)} is Said to be convergence to f if for any given

00 n N.S.t

0 nn n f x f x n X

5.4. Uniformly bounded sequence

A sequence fn(x) define on the set x is said to be uniformly bounded if  positive

real number M such that nf x M n and n X

5.5. Point wise convergence sequence

A sequence {fn(x)} is said to be pointwise convergence on x to the function f(x) if
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nn
lim f x f x n X

in other word for any given 00 n N.S.t

0 nn n f x f x n X

5.6. Uniform convergence of a sequence

Suppose that the sequence {fn(x)} convergence for every x X it means that

fn(x) tend to definite limit f(x) as n x X

i.e. nn
lim f x f x x X

then from the definition of limit for any given 0 m N.S.t

nn m f x f x x X

Let m = m , x if we keep  is fixed and vary x. Then we get the set of value

of m for different x X. This set of values of m may or not may have an upper bound if
this set has an upper bound n0, Then

0 nn n f x f x x X

in such case {fn(x)} is said to be uniformly convergent

5.7. Definition

A sequence of function {fn(x)} defined on the set X is said to be uniformly

convergent on x if given 00 n N.S.t

0 nn n f x f x x X

Note :- The reader should noted that there is a fixed m for every x in case of
uniform convergence whereas for pointwise convergence or ordinary convergence,
one value of  m will correspond to one value of X.

5.8. Point of non uniform convergence

A point x = x1 is said to be non uniform convergence for sequence {fn(x)}, if the
sequence does not convergence uniformly in any neighborhood of x1, however small.
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Remark 1. It is clear that every uniformly convergent sequence is pointwise
convergence.

Remark 2. Uniform limit function is same as pointwise limit function.

Uniform convergence of a series

A series nn 1
u x  is said to to convergence uniformly on x iff  the sequence

{fn(x)} converge uniformly on X in other word for any given

0 0 n0 n N s.t n n S x S x  x X

when Sn is the nth partial sum of the series and s is the sum of function.

5.9. Cauchy's general principle of uniform convergence

Theories 1. A sequence {fn(x)} defined on the set X is uniformly convergent on X if

and only if for any given 00 n N s.t

0 m nm,n n f x f x

Proof. The only if part:

Let the sequence {fn(x)} uniformly convergent on X then for any given

00 n N s.t

0 nn n f x f x x X
2

hence if 0n, m n we get for any x X

m n m n n m nf x f x f x f x f x f x f x f x f x f x f x
2 2

i.e. m nf x f x ......................................................(1)

The if part: Suppose for only  > 0 and x X, 0n N

S.t. 0 m nn, m n f x f x ..................................(2)
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Now we shall show that {fn(x)} is uniformly convergent on X by (2) we know that
fn(x) is cauchy sequence but every cauchy sequence is convergent.

So nn
lim f x exist x X

we define nn
lim f x f x x X

Keeping m fixed in (2) and letling n  then we get

mf x f x m n, x X

It follows that sequence {fn(x)} converges uniformly to f

Theorem 2. A sequence {fn(x)} on the set X is uniformly convergent iff any given

00 n N

S.t 0 n p nn n f x f x , P N

Proof : The only if part. Let sequence fn(x) be uniformly convergent on X so {fn(x)}

convergent uniformly to f(x)  x X  then for any given 00 n N s.t

0 nn n f x f x , x X
2

Now be proved that

n p n 1f x f x , n n and p N

If  0n n and p N then x X

n p n n p nf x f x f x f x f x f x

n p nf x f x f x .....f x

2 2
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n p n 0f x f x n n and p N x X ...................(1)

The if part : Suppose {fn(x)} is a sequence then for a given  > 0 and 0n N  and

p N

s.t n p nf x f x ...............................................................(2)

then we show that {fn(x)} is uniformly convergent, Now put m = n + p in (2) we
get

m n 0f x f x m, n n and x X .......................(3)

 {fn(x)} is a cauchy sequence but every cauchy sequence is convergent so

nn
lim f x exist x X

we define nn
lim f x f x x X

now keeping m fixed in (3) and letting n  then we get

m 0f x f x m n and x X

It follows that sequence {fn(x)} converges uniformly to f.

Theoram 3. A series nu x  converges uniformly on x iff for any given

00 n N s.t

0 n 1 n 2 n pn n u x u x ......u x , p 1,2...

and x X

Proof : Let 
n

n i
i 1

f x u x

where nu x  is uniformly convergent on X iff the sequence {fn(x)} is uniformly

convergent. Now let {fn(x)} is uniformly convergent on X iff for given 00 n N s.t
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0 n p nn n f x f x , x X

which proof as in theorem (2)

nu x  is uniformly convergent ifff

for given 00 n N s.t

0 n p nn n f x f x , p N, x X ....................(2)

Again now let 
n p n pn

n p n i i i
i 1 i 1 i n 1

f x f x u x u x u x

= n 1 n 2 n pu x u x ..... u x ...........................(3)

with the help of (3), (2) becomes

0 n 1 n 2 n pn n u x u x .....u x

hence proved.

5.10. Test for uniform convergence

Theorem 4. (Mn - test) Let {fn(x)} be a sequence of function define on the set X.

Let nn
lim f x f x x X  and let

nMn sup f x f x x X  then fn(x) converges uniformaly to f

iff n
n
lim M 0

Proof : The only if part. Let the sequence {fn(x)} converges uniformly to f on X

then for any given 00 n N s.t

0 nn n f x f x , x X ....................................(1)

 Keeping n fixed and taking supremum of both sides.
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For verifying x it follows n 1M n n

or n 1M 0 n n

n
n
lim M 0 as n

The if part : Let nM 0 as n  then given

00 n N s.t

0 nn n M

But Mn is the supremum of nf x f x

for varying x

Hence n n 1f x f x M x X, n n

Hence {fn(x)} converges uniformly to f on X.

Theorm 5. (Weierstrass’s M-test) - A series n
n 1

u x  is uniformly convergent on

X if nM  is convergent series of positive constant s.t. n nu x M  n  and x X .

Proof : Let nM  is convergent series of positive constant s.t. n nu x M  n

and x X .

Now we shall show that nu x  is uniformly convergent.

For any given 00 n s.t

0 n 1 n 2 n pn n M M ...... M , p N

also n nu x M
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n 1 n 2 n p n 1 n 2 n pu x u x .... u x u x u x u x

n 1 n 2 n pM M ...... M

n 1 n 2 n p nM M ...... M ,as M 0

Then n 1 n 2 n p 1u x u x ...... u x , n n x X

Hence un(x) is uniformly convergent.

EXAMPLE

 1. Show that 2
n 1

1
cos nx

n
 converges uniformly on R.

Solution : Here n 2

1
u x cos nx

n
 then

n n2 2

1 1
u x cos nx M

n n

Now n n n 2

1
u x M , M

n

by p series test p = 2 > 1 nM  is convergent.

nu x  is unformly convergent on R.

2. Show that p
1

sin nx
, p 1

n
 convergent on R.

Solution : Here n p

sin nx
u x

n
 then
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n np p

sin nx 1
u x M

n n

Now n n n p

1
u x M here M

n

by p series test the given series is convergent if p > 1

nu x  is uniformly convergent on R.

3. Show that sequence {fn(x)} where fn(x) = nx(1-x)n does not converge
uniformly on [0,1].

Solution : Here n nn n

nx
f x lim f x lim

1 x
from

n

nn n

x 1 xx
lim lim

log 1 x1 x log 1 x

= 0
n

1 x 0 as n�

Hence f(x) = 0        x 0,1

Now
n

n n

1
M sup f x f x sup nx 1 x taking x 0,1

n

n
1 1

n 1
n n

n
1 1

1 as n
n e

Hence by Mn test {fn(x)} not converse uniformly.
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4. Show that the series 2
n 1

1

1 n x
 converges in 1,

Solution : Here n 2

1
f x

1 n x

n 2

1
f x

1 n x

n2 2

1 1
M x 1,

1 n n

n 2
n 1 n 1

1
M

n
 is convergent

 By Weierstrass’s M-test, the given series is uniformly convergent for all

values of x 1, .

5. Show that the series 
2n

n
2n

n 1

a x

1 x
 is uniformly convergent for all real x if

n
n 1

a  is absolutely convergent.

Solution : Here 
2n

n
n 2n

a x
f x

1 x

since
2n

2n

x
1 x R

1 x

2n 2n
n

n n n n2n 2n

a x x
f x a . a M

1 x 1 x

for all x  R
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Since n
n 1

a  is absolutly convergent, therefore n n
n 1 n 1

M a  is convergent.

 By Weierstrass’s M-test, the given series is uniformly convergent for all  real
x.

6. Show that the series 
n

n
2n

n 1

a x

1 x
 is uniformly convergent for all real x if

n
n 1

a  is absolutely convergent.

Solution : Here 
n

n
n 2n

a x
f x

1 x

Let
n

2n

x
y

1 x

Then

2n n 1 n 2n 1

22n

1 x nx x 2nxdy

dx 1 x

     

n 1 2n 2n

22n

nx 1 x 2x

1 x

     

n 1 2n

22n

nx 1 x

1 x

dy
0 x 0, x 1

dx

But
2

2

d y
0

dx
 for x = 1. Hence y is maximum for x = 1
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n
n n

n n 2n

a x a
max f x max a y as x 1

1 x 2

      n n n

1
a a M

2

Thus n nf x M x

and n nM a  is convergent as na is given to be absolutly convergent,

 By Weierstrass’s M-test, the given series is uniformly convergent.

7. test the uniform convergence of the following, stating proper condition:

n

n 0

a cos nx

Solution : Write un(x) = an cos nx.

Then n n n
nu x a cos nx a a if a 0

Since na  is convergent, for 0 < a < 1, we have, by Weierstrass M-test, nu x

is uniformly convergent, if 0 < a < 1.

Theorm 6. Abel’s test : The series nu x Vn (x) is uniformly convergent in [a, b]

if

(i) nu x  is uniformly convergent in [a,b]

(ii) { Vn(x)} is uniformly bounded in [a,b]

(iii) { Vn(x)} is monotonic for each x  [a,b]

Proof : let Rn,p (x) and n,p (x) denoted partial remainders of n n nu v and u
respectively so that

n ,p n 1 n 1 n 2 n 2 n p n pR x u x v x u x v x .... u x v x
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and n,p n 1 n 2 n px u x u x .... u x

Then n,1 n 1x u x

n 2 n 1 n 2x u x u x

n 2 n2 n1u x x x

Similarly

n 3 n3 n 2u x x x etc

by the uniform convergence of nu x  in a, b   for any given 10 n N s.t

1 n,pn n

Also {vn(x)} is bounded uniformly in [a,b)

nK 0s.t v x K n, x a, b

Now n m n mv x v x v x v x K K 2K

i.e. n mv x v x 2K n,m N

Now

n,p n1 n 1 n 2 n1 n 2R x x v x x x v x

n3 n 2 n 3 np n pn p 1x x v x ... x x v x

or n,p n.1 n 1 n 2 n.2 n 2 n 3R x x v x v x x v x v x .....

n p 1 n p np n pn. p 1 x v x v x x v x

For 1n n
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n,p n 1 n 2 n 2 n 3 n p 1 n p n pR x v v v v ... v v v

� vn(x) is monoatomic for x a, b

So n,p n 1 n 2 n 2 n 3 n p 1 n p n pR x v v v v ... v v v

n 1 n p n pv v v 2K K

n,p 1 1 1R x n n where3K

Hence n nu v  is uniformly convergent in [a,b).

Theoram 7. (Dirichlet’s test) : The series nu x Vn (x) is uniformly convergent

on [a, b] if

(i) The sequence Vn(x) is monoatonic decreasing sequence converging

uniformly to zero for x a, b  and

(ii) {fn(x)} is bounded uniformly in [a,b) where 
n

n
n 1

u x

Proof :Since {fn(x)} is uniformly bounded in [a,b] then n  and x a, b K s.t

nf x K

Now
n 1 n

n 1 n n n n 1
1 1

f f u u u

Similarly n 2 n 1 n 2f f u

Since {vn(x)} converging uniformly to zero on [a,b] then any given 00 n M

s.t nv x 0 nn
lim v x 0�
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We write

n ,p n 1 n 1 n 2 n 2 n p n pR x u x v x u x v x .... u x v x

Then n.p n 1 n n 1 n 2 n 1 n 2 n p n p 1 n pR x f f v f f v .... f f v x

Rearranging the term we get

n.p n 1 n 1 n 2 n 2 n 2 n 3R x f x v v f v v .....

n p 1 n p 1 n p n p n pf v v f v

n.p n 1 n 2 n 2 n 3 n p 1 n p n pR x K v v v v ..... v v v

n 1 n 2 n 2 n 3 n p 1 n p n pK v v v v .... v v v

Thus n.p n 1 n p n pR x K v v v

  n 1 n pK v 2 v

  K

or n.p 1R x x a.b
1 2�

Hence  nu x Vn (x) is uniformly convergent.

Some EXAMPLE on Abel’s and Dirichlets test :

1. Test the series 
n 1

n1
x

n
 for uniform convergence in [0,1].

Solutioin :       Here 

n 1

n
n n

1
u x , v x x

n

(i) Clearly nu x  is uniformly convergent because it is convergent
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series of constant term.

(ii) Again n
nv x x  is uniformely bounded in [0,1] as

n
nv x x 1, x 0,1

(iii) {vn(x)} is monotonic decreasing in [0,1], Hence by Abel’s test
n 1

n1
x

n
 is uniformly convergent in [0,1]

2. If na  is convergent series of positive constant prove that the series n
na x

converges uniformly in [0,1]

Solutioin : Here n
n n nu x a , v x x

Then n nu x a  is uniformly convergent in [0,1], because na  convergent

series of positive constant.

Now n
nv x x  is bounded in [0,1] for  n

n xv x x v in 0,1

{vn(x)} is monotonic decreasing in [0,1],

3. Show that the series 
cos 2x cos3x

cos x .......
2 3

converges uniformly in

0 a x b 2

Solutioin : Here n n

1
u x cos nx, v x

n

n
1

f x cos nx cos x cos 2x ...... cos nx

n 1 nx
cos x x sin

2 2
x

sin
2
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i.e. n

x
f x cosec K

2

Since n

1
v x

n  is monotonic decreasing sequence converging uniformly

to zero.

{fn(x)} is bounded uniformly x 0, 2

Hence by Dirichlet’s test unvn is uniformly convergent.

4. Show that series 
n 1 n

n 1

1 x  converge uniformly in 0 x K 1

Solutioin : Here n 1 n
n nu 1 , v x

Since n n
n 1

f x u 0 if n is even
1 if n is odd

{fn(x)} is bounded for all n N

Also {fn(x)} is positive monotonic decreasing sequence converging to zero.

x in 0 x K 1

Hence by Dirichlet’s test the given series is uniformly convergent.

5.11. Uniform convergence and continuity

Suppose function {fn(x)} defined on [0,1]

Where fn(x) = xn {0  x  1

� � � n
nf x x n N� � �  is polynomial function

n N� �      f is defined by

0 if 0 x 1
f x

1 if x 1
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Here the sequence � �� �nf x  pointwise convergence to the function f which

discontinuous at x = 1 on [0,1].

� �� �nf x  is continuous function.

It is also true for the series of continuous function � �nu x�  converging pointwise

to f(x).

Theoram 8 : Let {fn} be the sequence of real valued function on [a,b] converges
uniformly to the function f on [a,b] if each fn(x) is continuous on [a,b] then f is also
continuous on [a,b].

Proof : Let t be arbitrary elements of [a,b] then we prove that f is continuous at t
since each fn(x) is continuous on [a,b].

 It is continuous at t since {fn} converges uniformly to f on [a,b]. Now for any

given 0 m N s.t

nf x f x n m
3

.........................................(1)

In particular we get

mf x f x
3

.......................................................(2)

and mf t f t
3

  .......................................................(3)

� fm is continuous at t then  > 0 s.t

m mf x f t and x t
3

.........................................(4)

If x t  then we get

� � � � � � � � � � � � � � � �m m m mf x f t f x f x f x f t f t f t� � � � � � �
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m m m mf x f x f x f t f t f t

3 3 3
by (2), (3) and (4)

Thus for given 0 0 s.t

� � � �f x f t� ��  whenever x t

f is continuous at t.

EXAMPLE

1. Show that series for which � �n 2 2

nx
f x , 0 x 1

1 n x
� � �

�
 can’t be differentiable

term by term at x = 0.

Solution : Here f(x) = 0 For 0  x  1

and � � � � � �n n
n h 0

f 0 h f 0
f 0 lim

h�

� �
� �

2 2

h 0

n h
1 n hlim 0 n at n

h�

�
�� � � � � ��

and � �f 0 0� �

Hence � � � �nn
f 0 lim f 0

��
� ��

The given series is not differentiable term by term at x = 0.

2. The givin series � �n x��  for which

4 2
n 2

1
f x log 1 n x

2n
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Show that the series � �n x�� does not converges uniformly but it

differentiable term by term.

Solution : Here 
4 2

n 2n n

1 n x
f x lim f x lim log

2n

3 2

2 24 2

4 2n n

4n x
n x1 n xlim lim 0, 0 x 1

4n 1 n x

Hence f x 0

and
2

n 4 2n n

xn
lim f x lim 0, 0 x 1

1 n x

nn
f x lim f x

term by term differentiation hold the series n x� is not uniformly

convergent in 0 x 1.

nf x  has 0 as a point of non uniform convergence.

3. Show that the function represented by 3
n 1

sin nx

n
 is differentiable for every

x and its derivatives is 3
n 1

cos nx

n

Solution : let n3 3
n 1

sin nx sin nx
f x and u x

n n

Then n 2

cos nx
x

n
�
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Thus n 2
n 1 n 1

cos nx
u x

n

Here 2 2 2

cos nx 1 1
x and

n n n

is convergent by p-series test, p = 2 >1. Hence weierstrass’s M-test, The series

nu x  is uniformly convergent for all x, It follows that series nu x  is differentiable

term by term hence

n 2
n 1 n 1

cos nx
f x u x

n

5.12. Uniform Convergence and Integration

Theoram 9. Let {fn} be a sequence of real valued function defined on closed and
bounded interval [a,b] and let fn  R [a,b] for n = 1, 2, 3, ......if {fn} converges uniformly
to the function f on [a,b) then f R[a,b] and

b b

na an
f x dx lim f x dx

Proof : Suppose for givin  > 0

The sequence fn converges uniformly to f on [a,b] then M 0 s.t  n  m and

nx [a,b] f x f x
3 b a ................................(1)

In particular for m = n

mf x f x
3 b a

or m mf x f x f x
3 b a 3 b a ........................(2)

� mf R[a,b] partition
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p = { a = x0, x1, .....xn = b} of [a,b]

s.t U (p, fm) - L (p, fm) < 
3

.........................................................(3)

Let r rm m , M m , mr, rM  denoted the infima and suprema of fm and f on

r 1 rx , x  respectively. Now from (2) we get

mf x f x x a, b
3 b a

r rm m m
3 b a

n n n

r r r r r
r 1 r 1 r 1

m m x m x x
3 b a

� � �

mp, f p, f
3

.........................................................(4)

mL p, f L p, f

similarly from (2) we get

mf x f x
3 b a

M M m
3 b a

n n

r r r r r
r 1 r 1

M x M m x x
3 b a

� � �

U (p, f)  U (p, fm) < 
3

.........................................................(5)

Uniform Convergence Sequence and Series of the Function

195



Adding (4) and (5) we get

m m

2
p, f L p, f L p, f p, f

3
� �

m m

2
p, f L p, f p, f L p, f

3
� �

2

3 3

f R a, b

Now for all m  n  m

b b b b

n n na a a a
f f f f f f

b

a
dx by 1

3 b a

b a
3 b a 3

Hence
b b

na an
lim f x dx f x dx

5.13. Term by term integration

Theoram 10. Let n
n 1

u x  be the series of real value function defined on

[a,b] s.t nu x R a, b  for n = 1, 2, 3 if the series converges unifromly to f on

[a,b) then

b b

n na a
n 1 n 1

f R a.b and u x dx u x dx
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Proof : let fn(x) = u1(x) + u2(x) + ....+ un(x)

Sam of finite number of R- integrable function is equal to R- integrable.

nf R a, b  for each n

Also for uniform convergence of the series nu x  is uniform convergence of

the sequence fn.

So that fn  f uniformly on [a,b)

Hence f R a, b  by theoram 1

and
b b b

n na a an
n 1

u x dx f x dx lim f x dx

b

man
m 1

lim u x dx

n b

man
m 1

lim u x dx

b

na
m 1

u x dx

EXAMPLE

1. Show that 
n1

2 20
1 1

x 1
dx

n n n 1

Solution : By weierstrass M-test the series 
n

2

x

n
 is convergent unifromly for

0  x  1 then it can be integrated term by term

1
n n n 11 1

2 2 n0 0
1 1 1 0

x x x
dx dx

n n n 1 x
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2
1

1

n n 1

2. Examine for term by term integration the series the sum of whose first n
term is n2x(1 - x)n   0  x  1.

Solution :  Here n2
nf x n x 1 x

and nn
f x lim f x 0  0  x  1

2

n nn n

n x
lim f x lim

1 x
from

   nn

2nx
lim

1 x log 1 x
from

   2nn

2x
lim 0

1 x log 1 x

nn
lim f x 0

But
1 1 n2

n0 0
f x dx n x 1 x dx

   

2n
1

n 1 n 2 as n  

So term by term integration is not valid in 0  x  1

It follows that series is non uniformly convergent for 0  x  1

It possible then for any given  > 0

n2
nf x f x n x 1 x 1
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For

n n
2

n

1 1 1
n m f x f x n 1 n 1

n n n

= as n      0  x  1

Which is contradiction of (1) hence series is non unifromly convergent in
0  x  1

3. Show that the series n

1
f x

1 nx
 can be integrated term by term in 0  x

 1 although they are not uniformly convergent in this interval.

Solution : Here n

1
f x

1 nx

and f x 0 for  0  x  1

1

0
f x dx 0

and
1 1

n0 0n n

1
lim f x dx lim dx

1 nx

n

1
lim log 1 n

n
from

n

1
1 nlim 0

1

Series is term by term integrated but we have already seen zero is the
point of non-uniform convergence of the series.

5.14. Uniform convergence and differentiation

Theoram 11. Let {fn} be a sequence of real valued function on [a,b] s.t

(i) fn is differentiable on [a,b]

(ii) The sequence {fn(c)} convergence for some point c of [a,b].
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(iii) The sequence f x  converges uniformly on [a,b] then the

sequence {fn} converges uniformly to differentiable limit f and

n
lim f x f x { a  x  b}

Proof : Let  > 0 be given then by convergence of {fn(t)} and by uniform convergence

of nf  on [a,b]  positive integer m

s.t n pn m, p m f c f c
2

.....................................(1)

and n pf x f x
2 b a a t b ................(2)

Now we apply mean value theorem of differential calculus to the function fn - fp

we have by (2)

n p n p

x y
f x f x f y f y

2 b a .........................(3)

2
x y b a�

For all n, p  m and all x  [a,b)

We show that for given  > 0  m s.t

n pn m, p m, x a, b f x f x

nf  converge uniformly to function f

i.e. nn
f x lim f x { a  x  b}

Let us now fix a point x on [a,b] define

n n
n

f y f x
y

y x
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and
f y f x

y
y x

....................................................................(4)

For a  y  b and  y  x then

n n
n ny x y x

f y f x
lim y lim f x

y x {n = 1, 2, 3... ..... (5)

Now for  n  m, p  m we get

n n p p
n p

f y f x f x f x
y y

y x

by (3)
2 b a

n  converge uniformly for y  x

� nf  converge to f

From equation (4)

n n
nn n

f y f x f y f x
lim y lim y

y x y x
...................(6)

uniformly for a y  b, y  x

Now apply theoram to n  (5) and (6) show that

ny x n
lim y lim f x

or ny x n

f y f x
lim lim f x

y x

or nn
f x lim f x x a,b
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5.15. Term by term differentiation

Theoram 12. Let n
n 1

v x  be the series of real valued differentiable function on

[a,b] s.t n
n 1

v c  converges for some point c in [a,b] and n
n 1

v x  converges uniformly

on [a,b], Then series n
n 1

v x  converges uniformly on [a,b] to a differentiable sum

function f and

n

r
n

r 1

f x lim v x a  x  b

or if a  x  b then

n n
n 1 n 1

d d
v x u x

dx dx

Proof : Suppose fn(x) = v1(x) + v2(x) +.......+ vn(x) then

� � � � � � � �n 1 2 nf x v x v x ...... v x� � � �� � � �

It follows the series � � � �n n
n 1 n 1

v x and v x
� �

� �

�� �  are equivalant to the sequence

� � � �n nf and f �  respectively..

Now proof is same as the theoram (1)

Theoram 13. Let � �� �nf x  be the sequence of real value function on [a,b] s.t

(i) fn(x) is differentiable on [a,b] for n = 1, 2, 3

(ii) The sequence � �� �nf x  converge to f on [a,b]

(iii) The sequence � �� �nf x� conferges uniformly on [a,b] to g.
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(iv) Each � �nf x�  is continuous on [a,b]

Then g x f x

i.e � � � �nn
lim f x f x
��

� �� a  x  b

Proof : Here the sequence � �� �nf x�  is uniformly convergent sequence of continuous

function to g on [a,b] it follows by theoram 8 that g is continuous on [a,b) and also

� �� �nf x�  converges uniformly to g on [a,x] where x  [a,b] it follows by the theorm 9.

we get
x x

na an
lim f t g t dt .........................................................(1)

By fundamental theoram of integral calculus we get

x

n n na
f t dt f x f a .....................................................(2)

But by hypothesis

and � � � �
� � � �n

n

n
n

lim f x f x

lim f a f a
��

��

�

� ................................................................(3)

With the help of (1), (2) and (3) we get

� � � � � �
x

a
f x f a g t� � � �a x b� �

� � � �f x g x� � a x b� �

or � � � �nn
f x lim f x

��
� ��

Exercise : 4

1. Show that series 

n 1

2

1

n x  uniform convergance for all value of x.
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2. Show that series 
sin 2x sin 3x

sin x .....
2 3

 converges uniformly in

0 a x b 2

3. Show that the series 
n 1 n

n 1

1 x  converges uniformly in 0 x K 1.

4. Let 
nx

n

1
g x e 0 x

n
. Prove that the sequence {gn} converges

uniformly to 0 on 0, .

5. Show that 0 is a point of non-uniform convergence of the sequence {fn(x)}
where

1
nf x tan nx for x 0 .

6. Show that the series 2 2 221 x x 1 x x 1 x ....... converges uniformly

to 1 x in 0 x 1.

7. Let 
n

n n

x
f x 0 x 1 .

1 x
 Show that {fn} converges uniformly on [0,

1

2
]

8. Let 
x

n
n

x
f x e 0 x

n

(i) Does {fn} converge uniformly to 0 in 0, ?

(ii) Does {fn} converge uniformly to 0 on 0,100 ?

9. Examine for term by term integration of the series for which

2nx
nf x nxe

10. Show that the series n

1
f x

1 nx
 can be integrated term by term in 0 x 1

although they are not uniformly convergent in this interval.
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11. Examine for term by term integration the series n 1 nx 1 2x  in the interval

0 x 1.

12. Show that series 2 4 2

1

n n x
 is uniformly convergent for all real values of x

and it can be differentiated term by term.

13. The given series 
3 5 7x x x

sin x x ......
3 5 7

 show that one can be

differentiation and obtain expansion of cos x,

Show that the series 

2 n 1

x log a log alog a
a 1 .........

1 2 n 1
 can be

integrated and differentiated term by term.

***
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